GNSS & Machine Learning Engineer

Tag: ITT

3rd-Level of Generative AI 

Defining 

1st-level generative AI as applications that are directly based on X-to-Y models (foundation models that build a kind of operating system for downstream tasks) where X and Y can be text/code, image, segmented image, thermal image, speech/sound/music/song, avatar, depth, 3D, video, 4D (3D video, NeRF), IMU (Inertial Measurement Unit), amino acid sequences (AAS), 3D-protein structure, sentiment, emotions, gestures, etc., e.g.

and 2nd-level generative AI that builds some kind of middleware and allows to implement agents by simplifying the combination of LLM-based 1st-level generative AI with other tools via actions (like web search, semantic search [based on embeddings and vector databases like Pinecone, Chroma, Milvus, Faiss], source code generation [REPL], calls to math tools like Wolfram Alpha, etc.), by using special prompting techniques (like templates, Chain-of-Thought [COT], Self-Consistency, Self-Ask, Tree Of Thoughts, ReAct [Reason + Act], Graph of Thoughts) within action chains, e.g.

we currently (April/May/June 2023) see a 3rd-level of generative AI that implements agents that can solve complex tasks by the interaction of different LLMs in complex chains, e.g.

However, older publications like Cicero may also fall into this category of complex applications. Typically, these agent implementations are (currently) not built on top of the 2nd-level generative AI frameworks. But this is going to change.

Other, simpler applications that just allow semantic search over private documents with a locally hosted LLM and embedding generation, such as e.g. PrivateGPT which is based on LangChain and Llama (functionality similar to OpenAI’s ChatGPT-Retrieval plugin), may also be of interest in this context. And also applications that concentrate on the code generation ability of LLMs like GPT-Code-UI and OpenInterpreter, both open-source implementations of OpenAI’s ChatGPT Code Interpreter/AdvancedDataAnalysis (similar to Bard’s implicit code execution; an alternative to Code Interpreter is plugin Noteable), or smol-ai developer (that generates the complete source code from a markup description) should be noticed.
There is a nice overview of LLM Powered Autonomous Agents on GitHub.

The next level may then be governed by embodied LLMs and agents (like PaLM-E with E for Embodied).

OpenAI releases GPT-4

OpenAI released GPT-4 within ChatGPT on March 14, 2023, described in detail in a 98-pages paper (summarized on youtube).

  • Available to ChatGPT-Plus subscribers (currently with a cap that is changing over time, e.g. 100 messages every 4 hours, or 25 messages every 3 hours).
  • Still based on training data that cuts off Sept 2021.
  • It still does not learn from its experience.
  • Still no internet access.
  • The training was already finalized in Aug 2022.
  • Fine-tuned via RLHF (Reinforcement Learning with Human Feedback).
  • API waitlist is open (so no API access yet for everyone)
  • API prices (for comparison: GPT-3.5-turbo $0.002 per 1k tokens):
    • gpt-4: 8K context window (about 13 pages of text) will cost $0.03 per 1K prompt tokens and $0.06 per 1K completion tokens.
    • gpt-4-32k: 32K context window (about 52 pages of text) will cost $0.06 per 1K prompt tokens and $0.12 per 1K completion tokens.
  • The number of parameters and size of the training data set have both not been published. So competitors are not encouraged to replicate these performance ingredients but are referred to a freely available benchmark (OpenAI Evals) that measures the real performance.
  • GPT-4 ranks in the 10% best of the bar exam and 0.5% best of biology olympiad.
  • GPT-4 can handle contexts of over 25,000 words.
  • GPT-4 can access images as inputs and can generate captions, classifications, and analyses. However, this image-to-text functionality is not yet publicly available.
  • Microsoft Bing was already using an early version of GPT-4 in the last few weeks.

An excellent overview by Greg Brockman, President and co-founder of OpenAI, can be found on youtube.

Microsoft released Visual ChatGPT on March 08, 2023, in a paper and with source code on GitHub and Hugging Face. Although this does not seem to be GPT-4-based, it demonstrates similar image capabilities via a combination of pre-existing technologies (generate/modify [text-to-image], and describe [image-to-text]).

Two days after the GPT-4 release, Microsoft announced on March 16, 2023, the integration of GPT-4 into their Office products as a feature they called Copilot. Copilot is not yet available for general use, but Microsoft plans to roll it out gradually to selected customers in the coming months.

© 2024 Stephan Seeger

Theme by Anders NorenUp ↑