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1 Introduction

The basic idea of the registration approach presented in [2] is to calculate for
each point in range image 1 the rotation and translation to each point in range
image 2 with the help of their local frames1 and to store the resulting transforma-
tion parameters �α�β�γ� tx� ty� tz� in a six dimensional Hough table by incrementing
a counter in the table at position �α�β�γ� tx� ty� tz�. Since transformations calcu-
lated from correct point correspondences result in the same transformation while
all other transformations are distributed more or less randomly in the parameter
space, a peak is expected in the Hough table at the position of the searched trans-
formation.

Since the number of Hough table cells is limited due to limited memory re-
sources, each Hough table cell has only a limited resolution �∆α�∆β�∆γ�∆tx�∆ty�∆tz�
that is connected to the size of the initial parameter domain. This Hough table cell
resolution is far beyond the desired accuracy of the transformation determination
when no or only little2 a priori knowledge is given for the initial parameter do-
main. The solution to this problem is to start with a rough resolution for each
Hough table cell, detect the Hough peak so that the parameter domain can be re-
stricted to the neighborhood of the peak, and then iterate the procedure by choos-
ing each time a higher resolution for the Hough table cells.

There are some practical problems in determining the neighborhood of the
transformation that corresponds to the Hough peak. Since the topology of rotation

1A local frame in a surface point can be given e.g. by the normal and the directions of minimal
and maximal curvature in this point.

2The translation domain can be easily reduced by an initial translation overlaying the centers
of mass of the two given range images and then only considering all reasonable remaining trans-
lations.
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parameters is non trivial (independent of the chosen parameterization) Hough cells
that are far away from each other in the Hough table can be close to each other
in the sense of corresponding rotations. A simple example is a rotation angle ϕ
whose values ϕ1 � 0� ε and ϕ2 � 2π� ε are close to each other in the sense of
rotations but far away in the Hough table since they lie on opposite sites of the
table.

In this paper we examine the neighborhood structure for three rotation repre-
sentations: the Euler angle representation, the axis and angle representation and
the quaternion representation.

2 Euler angle neighborhood structure

2.1 Definition of Euler angles

We use the Euler angle definition of [4]. A general rotation matrix in this repre-
sentation is given by the following matrix product:

R�α�β�γ� �

�
� cosα �sinα 0

sinα cosα 0
0 0 1

�
A
�
� cosβ 0 sinβ

0 1 0
�sinβ 0 cosβ

�
A
�
� cosγ �sinγ 0

sinγ cosγ 0
0 0 1

�
A

�

�
� cosα cosβcosγ�sinα sinγ �cos α cosβsinγ�sinα cosγ cosα sinβ

sinα cos βcosγ�cosα sinγ �sinα cos βsinγ�cosα cosγ sinα sinβ
�sinβcosγ sinβsinγ cosβ

�
A (1)

where
0� α � 2π� (2)

0� γ� 2π� (3)

0� β� π� (4)

2.2 Extraction of Euler angles from rotation matrices

Transforming point i of the first image in point j of the second image with the
help of the points’ local frames results in a translation vector t and especially in
a rotation matrix3 R from which the Euler angles α�β�γ have to be extracted to

3R is given by R j2 Rt
i1

where the columns of Rik are given by the local frames of point i in
image k � f1�2g, e.g. if the local frames are given by the normal n and the directions of minimal
e

1 and maximal e 2 curvatures Rik � �nik �e
1
ik

�e
2
ik
�.
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make an entry in the Hough table at the position corresponding to α�β�γ:

R �

�
� r00 r01 r02

r10 r11 r12

r20 r21 r22

�
A� �α�β�γ�� (5)

Since we know that R is a rotation matrix it should be orthogonal,

RtR � � �RRt
� (6)

By ensuring that R is calculated from orthonormal frames we expect that this
condition is satisfied. Nevertheless we have no guarantee that this is really the
case due to numerical errors. The quaternion representation may be advantageous
in this case, since for a given quaternion it is easy to find the next quaternion
which represents a rotation.

Comparing (5) with (1) we especially get the following relations,

r22 � cosβ� (7)

r12 � sinβsinα� (8)

r02 � sinβcosα� (9)

r21 � sinβsinγ� (10)

r20 � �sinβcosγ� (11)

Before calculating α�β and γ from (7)–(11) we would like to mention that the
functions arccos and arcsin are calculated by the computer in the following ranges,

ϕ1 � arccosx �� 0 � ϕ1 � π
ϕ2 � arcsinx �� �π

2 � ϕ2 � π
2 �

(12)

From (7) we get for β
β � arccosr22� (13)

Since, following to (4), β lies in the range between 0 and π, sinβ is equal to or
greater than zero,

sinβ� 0� (14)

From (8) we get

sinα �
r12

sinβ
� (15)
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Note that, if β goes to zero we will run into trouble with this equation.
Since sinβ� 0 the sign of sinα and therefore the range of possible solutions

for α completely depends on the sign of r12: if r12 is less than zero, sinα will be
also less than zero. Since, due to (2), α lies in the range between 0 and 2π, from
sinα � 0 it follows that α is in the range between πand 2π. On the other hand the
computer will give us a result for α in the range �π

2 and 0 when sinα � 0,

r12 � 0
�14���15�
�� sinα � 0

��
�

�12�
�� �π

2 � α � 0
α��0�2π�
�� π � α � 2π

(16)

In the same way we get in case of r12 � 0:

r12 � 0
�14���15�
�� sinα � 0

��
�

�12�
�� 0 � α � π

2
α��0�2π�
�� 0 � α � π

(17)

Similar conclusions can be made by using the second relation for α Eq.(9),

cosα �
r02

sinβ
� (18)

Performing a case distinction for r02 we get,

r02 � 0
�14���18�
�� cosα � 0

��
�

�12�
�� π

2 � α � π
α��0�2π�
�� π

2 � α �
3π
2

(19)

r02 � 0
�14���18�
�� cosα � 0

����
���

�12�
�� 0 � α � π

2
α��0�2π�
�� 0 � α � π

2
� 3π

2 � α � 2π

(20)

Combining the conditions from (16),(17) and (19),(20) more precise conclusions
can be made. For example, from (16) and (19) we get,

r12 � 0 � r02 � 0
α��0�2π�
�� π� α � 2π � π

2 � α �
3π
2

�� π� α �
3π
2 �

(21)

On the other hand, as mentioned in (16), if α is calculated from (15) as

α � arcsin
r12

sinβ
(22)
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the computer’s result will be in the range between �π
2 and 0. To map this interval

on the right interval from (21) we have to perform the following transformation,

α � π�α� (23)

This does not change the validity of (22) since, due to the addition theorem for
sine,

sin�π�α� � sinα� (24)

To summarize we have,

r12 � 0 � r02 � 0 : α � π� arcsin r12
sinβ� (25)

In the same way combining (16) and (20) we get

r12 � 0 � r02 � 0
α��0�2π�
�� π� α � 2π � �

0� α � π
2 � 3π

2 � α � 2π
	

�� 3π
2 � α � 2π�

(26)
To map the computer’s result of (22) in the range ��π

2 �0� to the right interval from
(26) we have to perform the following transformation

α � α �2π� (27)

This does not change the validity of (22) since

sin�α �2π� � sinα� (28)

To summarize we have,

r12 � 0 � r02 � 0 : α � arcsin r12
sinβ �2π� (29)

Combining (17) and (19) we get

r12 � 0 � r02 � 0
α��0�2π�
�� 0� α � π � π

2 � α �
3π
2

�� π
2 � α � π�

(30)

As mentioned in (17), if α is calculated from (22) the computer’s result will be in
the range between 0 and π

2 if r12 � 0. To map this interval on the right interval
from (30) we have to perform the same transformation as in (23). Therefore

r12 � 0 � r02 � 0 : α � π� arcsin r12
sinβ� (31)
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Finally, combining (17) and (20) we get

r12 � 0 � r02 � 0
α��0�2π�
�� 0� α � π � �

0� α � π
2 � 3π

2 � α � 2π
	

�� 0� α � π
2 �

(32)
Since the computer’s result of α calculated from (22) is already in the same range
(compare (17)), we do not have to transform α in this case. Therefore

r12 � 0 � r02 � 0 : α � arcsin r12
sinβ� (33)

To formulate an efficient algorithm for the calculation of α note that (25) and
(31) can be combined to

r02 � 0 : α � π� arcsin r12
sinβ� (34)

The essence of (29), (33) and (34) can be combined in the following pseudo-code:

α � arcsin



r12
sinβ

�
;

IF �r02 � 0� THEN α � π�α;
ELSE IF �r12 � 0� THEN α � α �2π;

The same derivation as for α can be made for γ. This derivation can be shortened
by comparing the relations for γ (10), (11) with the relations for α (8), (9): Sub-
stituting in (8) and (9) α by γ, r02 by�r20 and r12 by r21 we get the relations (10),
(11) that are the starting point for a derivation of the determination of γ. Therefore
we can make the same substitutions in the pseudo-code for the determination of α
to get an algorithm for the determination of γ:

γ� arcsin



r21
sinβ

�
;

IF ��r20 � 0� THEN γ� π�γ;
ELSE IF �r21 � 0� THEN γ� γ�2π;

β is calculated from (13). Since sinβ is used for the determination of α and for
the determination of γ it is useful to memorize this value in a separate variable b.
In addition we would like to write r20 � 0 instead of �r20 � 0. In this way the
complete algorithm for the determination of α�β and γ can be written as:
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β� arccos r22;
b � sinβ;

α � arcsin
� r12

b

	
;

IF�r02 � 0� THEN α � π�α;
ELSE IF �r12 � 0� THEN α � α �2π;

γ� arcsin
� r21

b

	
;

If �r20 � 0� Then γ� π�γ;
Else If �r21 � 0� Then γ� γ�2π;

Although this algorithm seems to be very efficient we can reduce the number of
operations if we calculate α and γ not from (8) respectively from (10) with the
help of the arcsin function but from (9) respectively from (11) with the help of the
arccos function. Let us derive the relations for α. From (9) (or (18)) we get

α � arccos
r02

sinβ
� (35)

As mentioned in (19) and (20) the computer’s result for α will be in the range

0 � α � π
2 if r02 � 0�

π
2 � α � π if r02 � 0�

(36)

On the other hand we know from (21), (26), (30) and (32)

r12 � 0 � r02 � 0 �� π � α �
3π
2

r12 � 0 � r02 � 0 �� 3π
2 � α � 2π

r12 � 0 � r02 � 0 �� π
2 � α � π

r12 � 0 � r02 � 0 �� 0 � α � π
2 �

(37)

To map the computer’s result for α from (35) to the range �0�2π�, α has to be
defined as

r12 � 0 � r02 � 0 �� α � 2π� arccos r02
sinβ

r12 � 0 � r02 � 0 �� α � 2π� arccos r02
sinβ

r12 � 0 � r02 � 0 �� α � arccos r02
sinβ

r12 � 0 � r02 � 0 �� α � arccos r02
sinβ�

(38)

This does not change the validity of (18) since, due to the addition theorem for
cosine,

cos�2π�α� � cosα� (39)

The essence of (38) can be combined in the following pseudo-code:
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α � arccos



r02
sinβ

�
;

IF �r12 � 0� THEN α � 2π�α;

To get the algorithm for the determination of γ we use the same procedure as
described before: since the basic relations for γ (10), (11) can be received from the
basic relations for α (8), (9) by substituting α by γ, r02 by �r20 and r12 by r21 we
only have to make the same substitutions in the pseudo-code for the determination
of α:

γ� arccos


� r20

sinβ

�
;

IF �r21 � 0� THEN γ� 2π�γ;

Therefore the complete algorithm for the determination of α, β and γ can be writ-
ten as:

β� arccos r22;
b � sinβ;

α � arccos
� r02

b

	
;

IF �r12 � 0� THEN α � 2π�α;

γ� arccos
�� r20

b

	
;

IF �r21 � 0� THEN γ� 2π�γ;

2.3 Problems with Euler angle determination

As already mentioned before there is a problem with the described algorithm if β
goes to zero. Since for the calculation of α as well as for the calculation of γ a
term is divided by b � sinβ, the algorithm is not valid for β � 0 (or β � π) and
will become unstable for β � 0 (or β � π). For β� 0 (β � π) also the other
entries of the rotation matrix that are not used for the calculation of α, β and γ so
far are not very helpful for the calculation of α and γ. To illustrate this fact we
write the rotation matrix (1) for β � 0 (β � π),

R�α�0�π��γ� �

�
�

�
��� cosα cosγ� sinα sinγ �

��� cosα sinγ� sinα cosγ 0
�
��� sinα cosγ� cosα sinγ �

��� sinα sinγ� cosα cosγ 0
0 0 �

���1

�
A

�

�
�

�
��� cos

�
α �

���γ
	 �sin

�
α �

���γ
	

0
�
��� sin

�
α �

���γ
	

cos
�
α �

���γ
	

0
0 0 �

���1

�
A � (40)
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Therefore for β� 0 (β� π) it is only possible to determine the sum (difference)
of α and γ. α or γ itself are completely undetermined. This phenomena is known
as the gimbal lock [3]. Another way to express this result is that all rotations
R�α�∆β�γ� with α � γ� const respectively all rotations R�α�π�∆β�γ� with α�
γ� const are neighbored. Thus very small variations in the entries of the given
rotation matrix (5) will result in completely other parameters α and γ. Therefore
it is in principle not possible to determine the Euler parameters with increasing
accuracy if β� 0 or β�πas it is needed in the hierarchical Hough table approach
of [2].

2.4 Neighborhood structure

We would like to summarize the neighborhood structure of Euler angles: First,
there are the trivial neighborhoods that do not make any problems:

	 �α�β�γ� and �α
∆α�β�γ� � α�β�γ,

	 �α�β�γ� and �α�β
∆β�γ� � α�β�γ,

	 �α�β�γ� and �α�β�γ
∆γ� � α�β�γ.

Since, due to (2) and (3), α and γ are in the range from 0 to 2π and since sinϕ �
sin�ϕ�2π� and cosϕ � cos�ϕ�2π� we also have the neighborhoods:

	 �∆α�β�γ� and �2π�∆α�β�γ� � β�γ,

	 �α�β�∆γ� and �α�β�2π�∆γ� � α�β.

More subtle are the neighborhoods mentioned in Subsec. 2.3,

	 �α�∆β�γ� � α�γ : α �γ� const,

	 �α�π�∆β�γ� � α�γ : α�γ� const.

As already mentioned in Subsec. 2.3 it is the Euler angle neighborhood struc-
ture for β� 0 and β� π that results in problems with the Hough table approach
of [2]. In the next subsection we present a solution to overcome these problems.
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2.5 Solutions to neighborhood problems

The basic idea to avoid problems with the determination of the Euler angles α, β
and γ from a given rotation matrix is to ensure that the rotation matrix does not
correspond to an angle β � 0 or β � π. For a given rotation matrix it can be
quickly analyzed from the entry r22 � cosβ whether β� 0 or β�π: if kr22k � 1
we will run into problems. Therefore in this case we transform the given rotation
matrix by a constant rotation in such a way that there are no problems to extract
the Euler angle parameters from the combined matrix. In this way we get unique
parameters for the combined matrix. However, even with these unique parameters
for the combined matrix it is not possible to get unique parameters for the original
matrix. But fortunately in the Hough table approach of [2] we do not need the
Euler parameters of the original matrix. To clarify this fact we shortly repeat the
algorithm of the Hough table approach. The basic steps are:

1. calculate a rotation matrix (and a translation vector) from every possible
point correspondences of the images to be registered,

2. calculate three (unique) parameters �p1� p2� p3� from each rotation matrix,

3. increment a counter in the Hough table at position4 �tx� ty� tz� p1� p2� p3�,

4. detect the parameter set that has most entries in the Hough table,

5. return the translation vector and the rotation matrix that correspond to the
most frequently occuring parameter set.

Thus, although we need a unique parameter set for the rotation in between, we do
not need any parameters for the rotation at the end. Therefore, if we transform
each rotation matrix R from step 1 with a rotation matrix Rconst we can get back
the original rotation matrix R in step 5 just by multiplying the combined matrix
RconstR by R�1

const �Rt
const from the left.

As mentioned above it is quite easy to analyze whether a given rotation ma-
trix will run into trouble with the β� 0 or β � π problem. However, it is the
principle of the Hough table approach that the same parameter set is used for
all rotations and translations. Therefore it is not possible to detect a problematic
matrix, transform it with a constant rotation Rconst, calculate the rotation parame-
ters and increment a counter in the Hough table at the position of the parameters.
We have to decide beforehand whether we want to transform all given rotation

4tx, ty and tz are the translation parameters.
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matrices by a constant rotation or not. But since we do not know beforehand
whether the searched transformation (the transformation that should correspond
to the Hough peak) will fail on the β � 0�π problem, we have to do both: we
have to transform all given rotation matrices by a constant rotation and build up
a Hough table for them and we have to extract the rotation parameters from the
original rotation matrix and build up a separate Hough table for these parameters.

We would like to mention that instead of transforming each of the n2 rotation
matrices in step 1 with Rconst (n is the number of points (respectively regions,
compare [2]) in each of the images to be registered) it is also possible just to
transform the n points (respectively� n2 regions!) and local frames of the second
image5. The rotation and translation from point pi1 of the first image to point p j2
of the second image is given by

Ri1� j2 � R j2R
t
i1� (41)

ti1� j2 � p j2 �R j2R
t
i1pi1 (42)

where the columns of R jk are given by the local frame of point j in image k.
Therefore transforming the points and local frames of the second image by Rconst

results in the new rotations and translations

RconstR j2R
t
i1 � RconstRi1� j2 � (43)

Rconstp j2 �RconstR j2R
t
i1pi1 � Rconstti1� j2 � (44)

In this way we can register the parameters of the rotation matrix RconstRi1� j2 and
of the translation vector Rconstti1� j2 in the Hough table, detect the parameter set
with maximal entry in the Hough table, rebuild the rotation matrix (and the trans-
lation vector) from this parameter set and finally return the retransformed rotation
matrix Ri1� j2 and translation vector ti1� j2 by multiplying Rt

const from the left,

Ri1� j2 � Rt
const

�
RconstRi1� j2

	
� (45)

t1i� j2 � Rt
const

�
Rconstti1� j2

	
� (46)

Of course, separate Hough tables have to be build for the transformations fol-
lowing from the transformed points and frames and the transformations following
from the original points and frames.

Till now we have shown that the problems resulting from the neighborhood
structure for β� 0�πcan be solved by an additional constant rotation Rconst. Now

5If the transformation from image 1 to image 2 is calculated the points and local frames of the
second image have to be transformed (compare (43) and (44)).
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we would like to give an example for a good choice of such a constant rotation
matrix. Therefore we explicitly write down the matrix product RconstRi1� j2 for the
case β� 0�π and compare the result with the rotation matrix in the Euler angle
parameterization (1),

RconstRi1� j2 �

�
� r̃00 r̃01 r̃02

r̃10 r̃11 r̃12

r̃20 r̃21 r̃22

�
A
�
� cos

�
α �

���γ
	 �sin

�
α �

���γ
	

0
���sin

�
α �

���γ
	

cos
�
α �

���γ
	

0
0 0 ���1

�
A (47)

�

�
B�

r̃00 cos
�

α �
���γ

�
�
��� sin

�
α �
���γ

�
�r̃00 sin

�
α �
���γ

�
�r̃01 cos

�
α �
���γ

�
���r̃02

r̃10 cos
�

α �
���γ

�
�
��� r̃11 sin

�
α �
���γ

�
�r̃10 sin

�
α �
���γ

�
�r̃11 cos

�
α �
���γ

�
���r̃12

r̃20 cos
�

α �
���γ

�
�
��� r̃21 sin

�
α �
���γ

�
�r̃20 sin

�
α �
���γ

�
�r̃21 cos

�
α �
���γ

�
���r̃22

�
CA

(48)

!
�

�
� cos α̃ cos β̃cos γ̃�sin α̃ sin γ̃ �cos α̃ cos β̃sin γ̃�sin α̃ cos γ̃ cos α̃ sin β̃

sin α̃ cos β̃cos γ̃�cos α̃ sin γ̃ �sin α̃ cos β̃sin γ̃�cos α̃ cos γ̃ sin α̃ sin β̃
�sin β̃cos γ̃ sin β̃sin γ̃ cos β̃

�
A (49)

Since α̃, β̃ and γ̃ are calculated as described in Subsec. 2.2 from the matrix entries
r02�r12�r22�r20�r21 we especially get from a comparison of (48) with (49),

���r̃22 � cos β̃� (50)

���r̃02 � cos α̃ sin β̃� (51)

���r̃12 � sin α̃ sin β̃� (52)

r̃20 cos
�
α �

���γ
	

�
��� r̃21 sin

�
α �

���γ
	

� �cos γ̃sin β̃� (53)

�r̃20 sin
�
α �

���γ
	
� r̃21 cos

�
α �

���γ
	

� sin γ̃sin β̃� (54)

To avoid the gimbal lock problem in the matrix (49) we would like to have a value
for β̃ so that sin β̃ and cos β̃ have the same values, i.e.

β̃ �
π
4

�� sin β̃ � cos β̃�
1p
2
� (55)

This can be reached by appropriately choosing r̃i j. Inserting (55) in (50–54) re-
sults in

���r̃22 �
1p
2
� (56)
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���r̃02 � cos α̃
1p
2
� (57)

���r̃12 � sin α̃
1p
2
� (58)

r̃20 cos
�
α �

���γ
	

�
��� r̃21 sin

�
α �

���γ
	

� �cos γ̃
1p
2
� (59)

�r̃20 sin
�
α �

���γ
	
� r̃21 cos

�
α �

���γ
	

� sin γ̃
1p
2
� (60)

Till now only r̃22 is determined through (56). Thus there is additional freedom in
choosing Rconst. We would like to choose α̃ in (57) and (58) again in a way so that
sin α̃ and cos α̃ have the same values, i.e.

α̃ �
π
4

�� sin α̃ � cos α̃ �
1p
2
� (61)

Inserting (61) in (57–58) we get

���r̃02 �
1
2
� (62)

���r̃12 �
1
2
� (63)

It is not possible to choose γ̃ in (59) and (60) with the same freedom as α̃ and β̃
since γ̃ depends on α �

���γ (and not only on r̃20 and r̃21). Nevertheless there is some
freedom in choosing r̃20 and r̃21. There is only one constraint we have to observe:
from the orthogonality of Rconst, i.e. RconstR

t
const � � , we get 9 equations that all

reduce to the same equation when we insert the already chosen values for r̃02� r̃21

and r̃22 from (62), (63) and (56) in Rconst,

r̃2
20 � r̃2

21 �
1
2
� (64)

This equation follows directly from the component �RconstR
t
const�22. To prove that

the equations following from the 8 other components of RconstR
t
const result in the

same equation (64) in a first step all components of Rconst have to be expressed
through r̃20� r̃21� r̃22� r̃02 and r̃12. This can be easily done by using (1) and (5),�
� r̃00 r̃01 r̃02

r̃10 r̃11 r̃12

r̃20 r̃21 r̃22

�
A !

�

�
� cos ᾱ cos β̄cos γ̄�sin ᾱ sin γ̄ �cos ᾱ cos β̄sin γ̄�sin ᾱ cos γ̄ cos ᾱ sin β̄

sin ᾱ cos β̄cos γ̄�cos ᾱ sin γ̄ �sin ᾱ cos β̄sin γ̄�cos ᾱ cos γ̄ sin ᾱ sin β̄
�sin β̄cos γ̄ sin β̄sin γ̄ cos β̄

�
A

(65)
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By inserting the relations following from (65)

cos ᾱ sin β̄ � r̃02 �� cos ᾱ �
r02

sin β̄
� (66)

sin ᾱ sin β̄ � r̃12 �� sin ᾱ �
r12

sin β̄
� (67)

�cos γ̄sin β̄ � r̃20 �� cos γ̄�� r20

sin β̄
� (68)

sin γ̄sin β̄ � r̃21 �� sin γ̄�
r21

sin β̄
� (69)

cos β̄ � r̃22 (70)
sin2 β̄�cos2 β̄�1

�� sin2 β̄ � 1� r̃2
22� (71)

in �Rconst�00 ��Rconst�01 ��Rconst�10 and �Rconst�11 from (65) we get

Rconst �

�
B�

�r̃02 r̃20 r̃22�r̃12 r̃21
1�r̃2

22

r̃12 r̃20�r̃02 r̃22 r̃21
1�r̃2

22
r̃02

r̃21 r̃02�r̃20 r̃22r̃12
1�r̃2

22

�r̃12 r̃21 r̃22�r̃02 r̃20
1�r̃2

22
r̃12

r̃20 r̃21 r̃22

�
CA (72)
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In this way it is straightforward to see that the nine equations following from

�
!
� RconstR

t
const

�

�
B�

�r̃02 r̃20 r̃22�r̃12 r̃21
1�r̃2

22

r̃12 r̃20�r̃02 r̃22 r̃21
1�r̃2

22
r̃02

r̃21 r̃02�r̃20 r̃22 r̃12
1�r̃2

22

�r̃12 r̃21r̃22�r̃02 r̃20
1�r̃2

22
r̃12

r̃20 r̃21 r̃22

�
CA
�
B�

�r̃02 r̃20 r̃22�r̃12 r̃21
1�r̃2

22

r̃21 r̃02�r̃20 r̃22 r̃12
1�r̃2

22
r̃20

r̃12 r̃20�r̃02 r̃22 r̃21
1�r̃2

22

�r̃12 r̃21 r̃22�r̃02 r̃20
1�r̃2

22
r̃21

r̃02 r̃12 r̃22

�
CA

�

�
BBBBBBBBBBBBBBBBB�

�
�r̃02 r̃20r̃22�r̃12 r̃21

1�r̃2
22

�2
�

�
r̃12 r̃20�r̃02 r̃22 r̃21

1�r̃2
22

�2
�r̃2

02

��r̃02 r̃20 r̃22�r̃12 r̃21��r̃21 r̃02�r̃20 r̃22r̃12�

�1�r̃2
22�

2 �

�r̃12 r̃20�r̃02 r̃22 r̃21���r̃12 r̃21 r̃22�r̃02 r̃20�

�1�r̃2
22�

2 �r̃02 r̃12

�r̃02 r̃20 r̃22�r̃12 r̃21
1�r̃2

22
r̃20�

r̃12 r̃20�r̃02 r̃22 r̃21
1�r̃2

22
r̃21�r̃02 r̃22

��r̃02 r̃20 r̃22�r̃12 r̃21��r̃21 r̃02�r̃20 r̃22 r̃12�

�1�r̃2
22�

2 �

�r̃12r̃20�r̃02 r̃22 r̃21���r̃12 r̃21 r̃22�r̃02 r̃20�

�1�r̃2
22�

2 �r̃02 r̃12

�
r̃21 r̃02�r̃20 r̃22 r̃12

1�r̃2
22

�2
�

�
�r̃12 r̃21 r̃22�r̃02 r̃20

1�r̃2
22

�2
�r̃2

21

r̃21 r̃02�r̃20 r̃22 r̃12
1�r̃2

22
r̃20�

�r̃12 r̃21 r̃22�r̃02 r̃20
1�r̃2

22
r̃21�r̃12 r̃22

�r̃02 r̃20 r̃22�r̃12 r̃21
1�r̃2

22
r̃20�

r̃12 r̃20�r̃02 r̃22 r̃21
1�r̃2

22
r̃21�r̃02 r̃22

r̃21 r̃02�r̃20 r̃22 r̃12
1�r̃2

22
r̃20�

�r̃12 r̃21 r̃22�r̃02 r̃20
1�r̃2

22
r̃21�r̃12 r̃22

r̃2
20�r̃2

21�r̃2
22

�
CCCCCCCCCCCCCCCCCA

(73)

all reduce to (64) when we insert r̃02 and r̃12 from (62) and (63).
Now we come back to (64). This condition is satisfied e.g. by choosing

r̃20 � r̃21 �
1
2
� (74)

Therefore we finally get from (56), (62), (63), (72) and (74) the reasonable choice
for Rconst

Rconst �

�
BB�
�1�

p
2

2
p

2

p
2�1

2
p

2
1
2p

2�1
2
p

2
�1�

p
2

2
p

2
1
2

1
2

1
2

1p
2

�
CCA � (75)

There is another possibility to avoid problems with the determination of the
Euler angles if β� 0 or β�π. Since, as we will see later, other parameterizations
run into problems at parameter configurations belonging to other rotations, we can
calculate from each rotation matrix two parameter sets belonging to two different
parameterizations and register these parameters in two different Hough tables. In
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this way we save the extra rotation with Rconst from above and avoid the gimbal
lock problem in at least one Hough table.

An even better way to avoid the problems with the gimbal lock is to choose
a parameterization that does not suffer from this problem. As will be seen later
the quaternion representation is such a parameterization. Since the quaternion
representation has another neighboring problem that makes the construction of the
Hough table in certain cases very difficult and since the quaternion representation
leads to a memory consuming Hough table due to its topology, we propose to
use the quaternion parameterization only in the first iteration of the Hough table
approach of [2], detect the Hough peak and then alternate to an Euler angle like
parameterization that has no gimbal lock problems in the neighborhood of the
Hough peak. In this way no extra calculations are necessary to avoid problems
with the gimbal lock.

3 Euler angle like neighborhood structure

The definition of Euler angles is not uniquely handled in the literature. In Subsec.
2.1 Eq. (1) we have defined the Euler angles following to [4] by

Rzyz �α�β�γ� �Rz�α�Ry�β�Rz�γ� 0� α�γ� 2π� 0� β� π (76)

where Rn̂�ϕ� describes a rotation where the unit vector n̂ specifies the direction
of the axis of rotation (here y and z axis of the given coordinate system) and ϕ the
angle of rotation around that axis. On the other hand in [1] the Euler angles are
defined by

Rzxz �α�β�γ� �Rz�α�Rx�β�Rz�γ� 0� α�γ� 2π� 0� β� π� (77)

These parameterizations have the gimbal lock problem for β � 0 and β � π.
Therefore in situations where we are only interested in small transformations, i.e.
transformations near the identity with Euler parameters close to 0, these parame-
terizations are not a good choice. In such cases it may be advantageous to use the
Euler like parameterizations

Rzyx �α�β�γ� � Rx�γ�Ry�β�Rz�α� 0� α�γ� 2π� �π
2
� β� π

2
(78)

�

�
� cosα cos β �sinα cosβ sinβ

cosα sinβsinγ�sinα cosγ �sinα sinβsinγ�cosα cosγ �cosβsinγ
�cos α sinβcosγ�sinα sinγ sinα sinβcos γ�cosα sinγ cosβcosγ

�
A

(79)
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or

Rxyz �α�β�γ� � Rz�γ�Ry�β�Rx�α� 0� α�γ� 2π� �π
2
� β� π

2
(80)

�

�
� cosβcosγ sinα sinβcos γ�cosα sinγ cosα sinβcosγ�sinα sinγ

cosβsinγ sinα sinβsinγ�cosα cosγ cosα sinβsinγ�sinα cosγ
�sinβ sinα cos β cosα cos β

�
A �(81)

We would like to derive algorithms for the extraction of the angle parameters from
rotation matrices for these two parameterizations in the following subsections.

3.1 Extraction of angle parameters from rotation matrices: ZYX
case

Using Rzyx �α�β�γ� in (78) in the form (5) we especially get from (79)

r02 � sinβ� (82)

r00 � cosα cosβ� (83)

r01 � �sinα cosβ� (84)

r12 � �cosβsinγ� (85)

r22 � cosβcosγ� (86)

Since, following to (78), β lies in the range between �π
2 and π

2 , cosβ is equal to
or greater than 0,

cosβ� 0� (87)

From (83) we get

cosα �
r00

cosβ
� (88)

Since cosβ� 0 the sign of cosα and therefore the range of possible solutions for
α completely depends on the sign of r00: if r00 is less than zero, cosα will be
also less than zero. Since, due to (78), α lies in the range between 0 and 2π, from
cosα � 0 it follows that α is in the range between π

2 and 3π
2 . On the other hand,

17



from cosα � 0 it follows that α is either in the range between 0 and π
2 or in the

range between 3π
2 and 2π,

r00 � 0
�87���88�
�� cosα � 0

α��0�2π�
�� π

2
� α �

3π
2
� (89)

r00 � 0
�87���88�
�� cosα � 0

α��0�2π�
�� 0� α � π

2
(90)

� 3π
2
� α � 2π�

Similar conclusions can be made by using the second relation for α Eq. (84),

sinα �� r01

cosβ
� (91)

Performing a case distinction for r01 we get,

r01 � 0
�87���91�
�� sinα � 0

α��0�2π�
�� 0� α � π� (92)

r01 � 0
�87���91�
�� sinα � 0

α��0�2π�
�� π� α � 2π� (93)

Combining the relations from (89), (90), (92) and (93) more precise conclusions
can be made,

r00 � 0 � r01 � 0
�89���92�
�� π

2 � α �
3π
2 � 0� α � π

�� π
2 � α � π�

r00 � 0 � r01 � 0
�89���93�
�� π

2 � α �
3π
2 � π� α � 2π

�� π� α �
3π
2 �

r00 � 0 � r01 � 0
�90���92�
�� �0�α�π

2 � 3π
2 �α�2π� � 0� α � π

�� 0� α � π
2 �

r00 � 0 � r01 � 0
�90���93�
�� �0�α�π

2 � 3π
2 �α�2π� � π� α � 2π

�� 3π
2 � α � 2π�

(94)
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When computing α from (88) respectively from

α � arccos
r00

cosβ
(95)

the computer’s result will be in the range �0�π� following to (12). To be precise α
will be in the range

0 � α � π
2 if r00 � 0�

π
2 � α � π if r00 � 0�

(96)

To map the computer’s result to the range �0�2π�, α has to be defined as

r00 � 0 � r01 � 0 �� α � arccos r00
cosβ�

r00 � 0 � r01 � 0 �� α � 2π� arccos r00
cosβ�

r00 � 0 � r01 � 0 �� α � arccos r00
cosβ�

r00 � 0 � r01 � 0 �� α � 2π� arccos r00
cosβ�

(97)

Again, this does not change the validity of (88) due to (39).
The essence of (97) can be combined in the following pseudo-code:

α � arccos



r00
cosβ

�
;

IF �r01 � 0� THEN α � 2π�α;

To get the algorithm for the determination of γwe proceed as in Subsec. 2.2: since
the basic relations for γ (85), (86) can be received from the basic relations for α
(83), (84) by substituting α by γ, r00 by r22 and r01 by r12 we only have to make
the same substitutions in the pseudo-code for the determination of α:

γ� arccos



r22
cosβ

�
;

IF �r12 � 0� THEN γ� 2π�γ;

Therefore the complete algorithm for the determination of α, β and γ can be writ-
ten as:

β� arcsinr02;
b � cosβ;

α � arccos
� r00

b

	
;

IF �r01 � 0� THEN α � 2π�α;

γ� arccos
� r22

b

	
;

IF �r12 � 0� THEN γ� 2π�γ;
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3.2 Extraction of angle parameters from rotation matrices: XYZ
case

Comparing Rzyx �α�β�γ� in the ZYX case (79) with Rxyz �α�β�γ� in the XYZ case
(81) we recognize that the matrix entries, that are relevant for the parameter ex-
traction in the ZYX case, r00�r01�r02�r12 and r22 are quite similar to the matrix
entries r00�r10�r20�r21 and r22 in the XYZ case:

r00 in (79) � r22 in (81)
r01 in (79) � �r21 in (81)
r02 in (79) � �r20 in (81)
r12 in (79) � �r10 in (81)
r22 in (79) � r00 in (81)

(98)

Therefore if we make the substitutions induced by (98) in the pseudo code for the
determination of angle parameters in the ZYX case we get an algorithm for the
determination of the angle parameters in the XYZ case. In addition we prefer to
use r21 � 0 and r01 � 0 instead of �r21 � 0 and �r10 � 0:

β� arcsin��r20� ;
b � cosβ;

α � arccos
� r22

b

	
;

IF �r21 � 0� THEN α � 2π�α;

γ� arccos
� r00

b

	
;

IF �r10 � 0� THEN γ� 2π�γ;

3.3 Problems with angle parameter determination

Of course, the Euler angle like parameterizations also suffer from the gimbal lock.
Although the gimbal lock problem does not occur at β� 0 and β�πwe run into
problems for β � �π

2 and β � π
2 since in the calculation of α and γ a term is

divided by cosβ that is 0 for β � �π
2 and β � π

2 . As for the usual Euler angles
in Subsec. 2.3 for the critical values of β the other entries in the rotation matrix
that are not used for the calculation of α�β and γ so far are not very helpful for the
calculation of α and γ. For β ��π

2 (β � π
2 ) we have

Rzyx�α� �

���

π
2
�γ� �

�
� 0 0 �

���1
�

��� cosα sinγ� sinα cosγ �
��� sinα sinγ� cosα cosγ 0

�
��� cosα cosγ� sinα sinγ �

��� sinα cosγ� cosα sinγ 0

�
A
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�

�
� 0 0 �

���1
sin
�
α �

���γ
	

cos
�
α �

���γ
	

0
�
��� cos

�
α �

���γ
	

�

��� sin
�
α �

���γ
	

0

�
A (99)

and

Rxyz�α� �

���

π
2
�γ� �

�
� 0 �

��� sinα cosγ� cosα sinγ �

��� cosα cosγ� sinα sinγ
0 �

��� sinα sinγ� cosα cosγ �

��� cosα sinγ� sinα cosγ
�
���1 0 0

�
A

�

�
� 0 �

��� sin
�
α �

���γ
	

�

��� cos
�
α �

���γ
	

0 cos
�
α �

���γ
	 �sin

�
α �

���γ
	

�
���1 0 0

�
A � (100)

Therefore for β�
π
2 it is only possible to determine the sum respectively dif-

ference of α and γ. As already mentioned in the context of the usual Euler
angles in Subsec. 2.3 another way to express this result is that all rotations
Rzyx

�
α� �

���
π
2

�
���∆β�γ

	
with α �

���γ� const respectively all rotationsRxyz
�
α� �

���
π
2

�
���∆β�γ

	
with α �

���γ� const are neighbored. All other neighborhoods are the same as de-
scribed for the usual Euler angles in Subsec. 2.4.

4 Axis and angle neighborhood structure

In the axis and angle parameterization of rotations a rotation is characterized by
an axis of rotation �n and an angle of rotation ψ around that axis: Rn̂�ψ� (see Fig.
1). The axis of rotation is determined by the polar and azimuthal angles �θ�ϕ� of
its direction with

0� θ � π� (101)

0� ϕ � 2π � (102)

For the angle of rotation ψ we have

0� ψ� π� (103)

There is a redundancy in this parameterization:

R�n̂�π� �Rn̂�π� � (104)

The structure of the parameter space can be visualized by associating each rotation
with a three dimensional vector v � ψ�n pointing in the direction �n with magni-
tude equal to ψ. The tips of these vectors fill a 3-dimensional sphere of radius π.
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Figure 1: A rotation can be characterized by an axis of rotation and an angle
of rotation around that axis (left). The parameter space of an axis and angle
parameterization (right): each rotation is associated with a three dimensional
vector pointing in the direction �θ�ϕ� with magnitude equal to the rotation angle
ψ.

Because of the redundancy expressed in Eq. (104), two points on the surface of
the sphere on opposite ends of a diameter are equivalent to each other [4] (see also
Fig. 4).

Having the cartesian coordinates of the axis of rotation it is easy to get its
spherical coordinates. We have

n̂x � sinθcosϕ� (105)

n̂y � sinθsinϕ� (106)

n̂z � cosθ� (107)

From (107) we get
θ� arccos n̂z� (108)

Since, due to (101), θ �0�π�
sinθ� 0� (109)

Therefore, following to sin2 θ� cos2 θ� 1 we have

sinθ � �
p

1� cos2 θ (110)
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�107�
� �

q
1� n̂2

z � (111)

In this way by combining (105) and (111) we get

ϕ � arccos
n̂xp

1� n̂2
z

� (112)

Due to (12) the computer’s result of (112) will be in the range between 0 and π.
But following to (102) ϕ should be in the range between 0 and 2π. Therefore in
addition to (105) we have to recognize (106). From (106) we get

sinϕ �
n̂y

sinθ
� (113)

Since, due to (109) sinθ� 0, the sign of sinϕ and therefore the range of ϕ com-
pletely depends on n̂y: if n̂y � 0, sinϕ � 0 so that ϕ is in the range between 0 and
π; if n̂y � 0, sinϕ � 0 so that ϕ is in the range between πand 2π. Thus we have

n̂y � 0 �� ϕ � arccos
n̂xp

1� n̂2
z

� (114)

n̂y � 0 �� ϕ � 2π� arccos
n̂xp

1� n̂2
z

� (115)

Again (115) does not change the validity of (105) due to (39).
The essence of (108), (114) and (115) can be combined in the following

pseudo-code:

θ� arccos n̂z;
ϕ � arccos n̂xp

1�n̂2
z
;

IF �n̂y � 0� THEN ϕ � 2π�ϕ;

All we have to do is to determine the axis of rotation in cartesian coordinates �n
and the angle of rotation ψ.

4.1 Determination of the angle of rotation

To determine the angle of rotation we have to find an expression for an arbitrary
rotation matrix in terms of the axis �n and the angle of rotation ψ. Let us assume
that we have already determined the axis of rotation �n (we will perform this step
in the next subsection with the results from this subsection). Then the rotation
around �n can be decomposed into three steps, e.g. into
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1. Rotate the coordinate system so that the x-axis coincides with the rotation
axis described by �n .

2. Rotate about ψ around the x-axis.

3. Rotate the coordinate system back so that the x-axis is in its old position.

The advantage of such a decomposition is that it is easy to specify the rotation
matrices belonging to each of these steps. The easiest step is the rotation about ψ
around the x-axis

Rx �

�
� 1 0 0

0 cosψ �sinψ
0 sinψ cosψ

�
A � (116)

If we denote the rotation matrix that rotates the x-axis to the rotation axis �n by �R

we have for the rotation matrix Rn̂ describing the rotation around �n

Rn̂ � �RRx�R
t (117)

by recognizing �R�1 � �Rt . Note that the first performed rotation is the inverse
of a rotation of the x-axis to the rotation axis �n which is the same as rotating the
coordinate system in a way so that the x-axis coincides with �n . It is now our task
to construct �R.

Since �R is defined by rotating the x-axis to the rotation axis described by �n ,
we have

�R

�
� 1

0
0

�
A�

�
� n̂x

n̂y

n̂z

�
A � (118)

In addition we know that the image �n� of �0�1�0�t must be perpendicular to
�n̂x� n̂y� n̂z� since angles are invariant under rotations

�
� n̂�x

n̂�y

n̂�z

�
A �
�
� n̂x

n̂y

n̂z

�
A� 0� (119)

�n� is not uniquely determined by (119). One possible solution for �n� from (119)
is �

� �n̂y� n̂z

n̂x

n̂x

�
A � (120)
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Since lengths are preserved under rotations the image �n� of �0�1�0�t in addition
has to be normalized to 1:�

� n̂�x

n̂�y

n̂�z

�
A �

1q
��n̂y� n̂z�

2 � n̂2
x � n̂2

x

�
� �n̂y� n̂z

n̂x

n̂x

�
A

�
1q

2�2n̂yn̂z� n̂2
y � n̂2

z

�
� �n̂y� n̂z

n̂x

n̂x

�
A (121)

where in the last equation we have made use of the normalization condition for �n ,
n̂2

x � n̂2
y � n̂2

z � 1. Since

�
� 0

0
1

�
A�

�
� 1

0
0

�
A�

�
� 0

1
0

�
A (122)

and since the cross product is invariant under rotations, the image �n� of the third
base vector �0�0�1�t is

�n� � �n� �n�

�118���121�
�

�
� n̂x

n̂y

n̂z

�
A� 1q

2�2n̂yn̂z� n̂2
y � n̂2

z

�
� �n̂y� n̂z

n̂x

n̂x

�
A

�
1q

2�2n̂yn̂z� n̂2
y � n̂2

z

�
� n̂yn̂x� n̂zn̂x

n̂2
y� n̂yn̂z�1

�n̂2
z � n̂yn̂z �1

�
A (123)

where in the last equation we again have made use of the normalization condition
for �n .

Since the columns of a matrix are the images of the base vectors we get from
(118), (121) and (123) for �R

�R �

�
BBBB�

n̂x
�n̂y�n̂zp

2�2n̂yn̂z�n̂2
y�n̂2

z

n̂yn̂x�n̂zn̂xp
2�2n̂yn̂z�n̂2

y�n̂2
z

n̂y
n̂xp

2�2n̂yn̂z�n̂2
y�n̂2

z

n̂2
y�n̂yn̂z�1p

2�2n̂yn̂z�n̂2
y�n̂2

z

n̂z
n̂xp

2�2n̂yn̂z�n̂2
y�n̂2

z

�n̂2
z�n̂yn̂z�1p

2�2n̂yn̂z�n̂2
y�n̂2

z

�
CCCCA � (124)
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It is now straightforward to calculateRn̂ � �RRx�R
t from (117) by using (116) and

(124). However it is advantageous to write down �RRx�R
t at first with a general

matrix �R to facilitate the calculations:

Rn̂ �

�
� r̃00 r̃01 r̃02

r̃10 r̃11 r̃12

r̃20 r̃21 r̃22

�
A
�
� 1 0 0

0 cosψ �sinψ
0 sinψ cosψ

�
A
�
� r̃00 r̃10 r̃20

r̃01 r̃11 r̃21

r̃02 r̃12 r̃22

�
A

�

�
BBBBBB�

r̃2
00��r̃2

01�r̃2
02�cosψ r̃00 r̃10��r̃01 r̃11�r̃02 r̃12�cosψ�

�r̃01 r̃12�r̃02 r̃11� sinψ
r̃00 r̃20��r̃01 r̃21�r̃02 r̃22�cosψ�

�r̃02r̃21�r̃01 r̃22� sinψ

r̃00 r̃10��r̃01 r̃11�r̃02 r̃12�cosψ�
�r̃01 r̃12�r̃02 r̃11�sinψ

r̃2
10��r̃2

11�r̃2
12�cosψ r̃10 r̃20��r̃11 r̃21�r̃12 r̃22�cosψ�

�r̃11r̃22�r̃12 r̃21� sinψ

r̃00 r̃20��r̃01 r̃21�r̃02 r̃22�cosψ�
�r̃02 r̃21�r̃01 r̃22�sinψ

r̃10 r̃20��r̃11 r̃21�r̃12 r̃22�cosψ�
�r̃11 r̃22�r̃12 r̃21� sinψ

r̃2
20��r̃2

21�r̃2
22�cosψ

�
CCCCCCA

�

(125)

Now we use (124) in (125) to get for Rn̂

Rn̂ �

�
� n̂2

x��1�n̂2
x�cosψ n̂xn̂y�1�cos ψ��n̂z sinψ n̂xn̂z�1�cosψ��n̂y sinψ

n̂xn̂y�1�cosψ��n̂z sinψ n̂2
y��1�n̂2

y�cosψ n̂yn̂z�1�cosψ��n̂x sinψ
n̂xn̂z�1�cosψ��n̂y sinψ n̂yn̂z�1�cosψ��n̂x sinψ n̂2

z��1�n̂2
z�cosψ

�
A � (126)

It was our aim to determine the angle of rotation ψ from a given rotation matrix
R. Therefore a general rotation matrix R like in (5) should be compared with Rn̂

from (126). We get e.g.

r00 � n̂2
x �
�
1� n̂2

x

	
cosψ� (127)

Thus, if n̂x �� 1 we have

ψ � arccos

�
r00� n̂2

x

1� n̂2
x


� (128)

If n̂x � 1 we conclude from the normalization of �n , n̂2
x � n̂2

y � n̂2
z � 1, that n̂y �

n̂z � 0. Inserting �n � �1�0�0�t �: �nx in Rn̂ from (126) we get

Rn̂x �

�
� 1 0 0

0 cosψ �sinψ
0 sinψ cosψ

�
A (129)

so that ψ can be determined e.g. by

ψ � arccos r11� (130)

The essence of (128) and (130) can be combined into the following pseudo-code:
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IF �n̂x �� 1� THEN ψ � arccos



r00�n̂2
x

1�n̂2
x

�
;

ELSE ψ � arccosr11;

4.2 Determination of the axis of rotation

We want to determine the axis of rotation from a given rotation matrix R. The
characteristic of the axis of rotation is that it is invariant under the rotation. In
other words it is the eigenvector of the corresponding rotation matrix to the eigen-
value 1

R�n �

�
� r00 r01 r02

r10 r11 r12

r20 r21 r22

�
A
�
� n̂x

n̂y

n̂z

�
A

!
� 1

�
� n̂x

n̂y

n̂z

�
A � (131)

The most elegant way to determine �n is by recognizing that Rt has the same
eigenvector and eigenvalue as R since

1�n � � �n �
�
RtR

	
�n �Rt �R�n�

�131�
� Rt�n � (132)

Combining (131) and (132) we have

�
R�Rt	�n �

�
� 0 r01� r10 r02� r20

r10� r10 0 r12� r21

r20� r02 r21� r12 0

�
A
�
� n̂x

n̂y

n̂z

�
A� 0� (133)

We already know that only 2 of the 3 equations in (133) are independent, since,
if �n is an eigenvector of R, also all multiples of �n are eigenvectors of R to the
same eigenvalue. Considering the equations corresponding to the first 2 rows in
(133)

�r01� r10� n̂y ��r02� r20� n̂z � 0� (134)

�r10� r01� n̂x ��r12� r21� n̂z � 0 (135)

we get

n̂y �
r20� r02

r01� r10
n̂z� (136)

n̂x �
r12� r21

r01� r10
n̂z (137)
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provided that r01� r10 �� 0. If r01� r10 � 0, (134) and (135) reduce to

�r02� r20� n̂z � 0� (138)

�r12� r21� n̂z � 0 (139)

so that we have to consider the third equation following from (133)

�r20� r02� n̂x ��r21� r12� n̂y � 0� (140)

If r20 �� r02 we get from (138) and (140)

n̂z � 0� (141)

n̂x �
r12� r21

r20� r02
n̂y� (142)

Otherwise, if r20 � r02, (140) reduces to

�r21� r12� n̂y � 0� (143)

so that we can conclude from (139) and (143)

n̂z � 0� (144)

n̂y � 0 (145)

if r21 �� r12. If in addition r21 � r12, we have R �Rt !
�R�1, so that R2 � � . In

other words, rotating two times around the same axis about the same angle will
give the identity. So we can conclude that we rotate about an angle of 0� or 180�

around an unknown axis of rotation. If we rotate about 0� already R (and not just
R2) is the identity (R � � ). Thus, all vectors �n are eigenvectors of R. In such a
case we choose the same eigenvector as in the case r21 �� r12. If we rotate about
ψ � 180� we get from (126) with sinψ � 0 and cosψ ��1

Rn̂ �

�
� 2n̂2

x�1 2n̂xn̂y 2n̂xn̂z

2n̂xn̂y 2n̂2
y�1 2n̂yn̂z

2n̂xn̂z 2n̂yn̂z 2n̂2
z�1

�
A � (146)

If we compare this with a given rotation matrix R as in (131) we can conclude
from the following two resulting equations whether the angle of rotation ψ is 0�

or 180�,

r00 � 2n̂2
x�1� (147)

r11 � 2n̂2
y�1� (148)
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If r00 � 1 and r11 � 1 we can conclude that ψ � 0 (i.e. R � � ), since otherwise
we would get in this case from (147) that n̂2

x � 1 and at the same time from (148)
that n̂2

y � 1. But since �n is normalized in (146) (see (118) for its precise definition)
n̂2

x � n̂2
y � 1 is not possible.

To determine �n in the case ψ � 180� we get from (147), (148) and (146)

n̂x �

r

r00 �1
2

� (149)

n̂y �

r

r11 �1
2

� (150)

n̂z �

r

r22 �1
2

� (151)

To get the correct signs for n̂x� n̂y and n̂z we have to compare again (146) with the
given rotation matrix R,

r01 � 2n̂xn̂y� (152)

r02 � 2n̂xn̂z� (153)

r12 � 2n̂yn̂z� (154)

Due to the redundancy (104) it is possible to arbitrarily choose one of the signs in
(149–151), e.g.

n̂z ��

r
r22 �1

2
� (155)

Then we can directly follow from (153) and (154) the signs of n̂x and n̂y if n̂z �� 0,

r02 � 0
�153���155�

�� n̂x � 0� (156)

r12 � 0
�154���155�

�� n̂y � 0� (157)

If n̂z � 0 we again have (due to the redundancy (104)) the freedom to arbitrarily
choose one of the signs of n̂x or n̂y, e.g.

n̂x ��

r
r00 �1

2
� (158)

Then, for the sign of n̂y we have to consider (152),

r01 � 0
�152���158�

�� n̂y � 0� (159)
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If in addition n̂x � 0 we can arbitrarily choose the sign of n̂y, e.g.

n̂y ��
r

r11 �1
2

� (160)

The essence of (136), (137), (141), (142), (144), (145), (147), (148), (149),
(150), (155), (156), (157) and (159) can be combined into the following pseudo-
code where we additionally take the normalization of �n into account:

IF �r01 �� r10� THEN

f
n̂y �

r20�r02
r01�r10

;

n̂x �
r12�r21
r01�r10

;

r �
q

n̂2
x � n̂2

y �1;

n̂z �
1
r ;

n̂y � n̂y
r ;

n̂x � n̂x
r ;

g
ELSE IF �r20 �� r02� THEN

f
n̂z � 0;
n̂x �

r12�r21
r20�r02

;

r �
p

n̂2
x �1;

n̂y �
1
r ;

n̂x � n̂x
r ;

g
ELSE IF �r21 �� r12 OR �r00 � 1 AND r11 � 1�� THEN

f
n̂z � 0;
n̂y � 0;
n̂x � 1;

g
ELSE

f
n̂x �

q
r00�1

2 ;

n̂y �
q

r11�1
2 ;
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n̂z �
q

r22�1
2 ;

IF �n̂z �� 0� THEN

f
IF �r02 � 0� THEN n̂x ��n̂x;
IF �r12 � 0� THEN n̂y ��n̂y;

g
ELSE

f
IF �r01 � 0� THEN n̂y ��n̂y;

g
g

We will discuss the neighborhood structure of the axis and angle parameterization
in further detail in a comparison with the quaternion parameterization described
next.

5 Quaternion neighborhood structure

The quaternion parameterization is very similar to an axis and angle parameteri-
zation in its neighborhood structure. But before diving in the quaternion neigh-
borhood structure we give at first a short introduction to quaternions and their
calculation rules, and we describe how to extract the quaternion parameters from
a general rotation matrix.

5.1 Introduction to quaternions

A quaternion q̇ can be represented in the complex number notation

q̇ � q0 � iqx � jqy � kqz (161)

with real part q0 and three imaginary parts qx�qy�qz. For the imaginary units i� j�k
the following equations hold:

i2 � �1� j2 � �1 k2 � �1�
i j � k� jk � i� ki � j�
ji � �k� k j � �i� ik � � j�

(162)
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With (162) the multiplication of quaternions ṙ and q̇ can be defined in terms of the
products of their components,

ṙq̇ � �r0q0� rxqx� ryqy� rzqz�

� i�r0qx � rxq0 � ryqz� rzqy�

� j �r0qy� rxqz � ryq0 � rzqx�

� k �r0qz � rxqy� ryqx � rzq0� �

In general ṙq̇ �� q̇ṙ.
The dot product of two quaternions is the sum of products of corresponding

components:
ṗ � q̇ � p0q0 � pxqx � pyqy � pzqz� (163)

The square of the magnitude of a quaternion is the dot product of the quaternion
with itself:

kq̇k2 � q̇ � q̇� (164)

A unit quaternion is a quaternion whose magnitude equals 1.
The conjugate of a quaternion negates its imaginary parts:

q̇	 � q0� iqx� jqy� kqz� (165)

Vectors can be represented by purely imaginary quaternions. If r � �x�y�z�T ,
we can use the quaternion

ṙ � 0� ix� jy� kz� (166)

Scalars can be similarly represented by using real quaternions.
Using the fact that only rotations preserve dot products and cross products, we

can represent a rotation by a quaternion if we can find a way of mapping purely
imaginary quaternions (that represent vectors) into purely imaginary quaternions
in such a way that dot and cross products are preserved. It can be shown that the
composite product

ṙ
 � q̇ṙq̇	� (167)

where q̇ is a unit quaternion, transforms the imaginary quaternion ṙ into an imagi-
nary quaternion ṙ
 and preserves the dot and cross products between ṙ and a second
imaginary quaternion ṙ2. Since

��q̇� ṙ ��q̇	� � q̇ṙq̇	 (168)
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�q̇ represents the same rotation as q̇.
It is straightforward to verify that the composition of rotations corresponds to

multiplication of quaternions:

ṙ

 � ṗṙ
 ṗ	

� ṗ�q̇ṙq̇	� ṗ	
���
� �ṗq̇� ṙ �ṗq̇�	 �

The overall rotation is represented by the unit quaternion ṗq̇.
It may be of interest to note that it takes fewer arithmetic operations to mul-

tiply two quaternions than it does to multiply two 3� 3 matrices. Also, since
calculations are not carried out with infinite precision on a computer the product
of many orthonormal matrices may no longer be orthonormal, just as the product
of many unit quaternions may no longer be a unit quaternion. However it is trivial
to find the nearest unit quaternion, whereas it is quite difficult to find the nearest
orthonormal matrix.

Unit quaternions are closely related to the geometrically intuitive axis and
angle notation. A rotation by an angle ψ about the axis defined by the unit vector
�n � �n̂x� n̂y� n̂z�

T can be represented by the unit quaternion

q̇ � cos
ψ
2
� sin

ψ
2
�in̂x � jn̂y � kn̂z� � (169)

The relation of a unit quaternion q̇ to the familiar orthonormal rotation matrix R q̇

is given by

Rq̇ �

�
�
�
q2

0 �q2
x�q2

y �q2
z

	
2�qxqy�q0qz� 2�qxqz �q0qy�

2�qyqx �q0qz�
�
q2

0�q2
x �q2

y�q2
z

	
2�qyqz�q0qx�

2�qzqx�q0qy� 2�qzqy �q0qx�
�
q2

0�q2
x�q2

y �q2
z

	
�
A �

(170)

5.2 Extraction of quaternion parameters from rotation matri-
ces

We use the relation (169) to extract quaternion parameters from a rotation matrix.
From (169) we get,

q0 � cos
ψ
2
� (171)
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Figure 2: The neighborhood of a rotation near the identity transformation in the
axis and angle parameterization (left). Since the spherical coordinates �θ�ϕ� of
points in the neighborhood of the origin take on all values in their definition range,
the neighborhood of the identity transformation is spread over the whole plane in
the Hough table belonging to an angle of rotation ψ� 0 (right).

qx � sin
ψ
2

n̂x� (172)

qy � sin
ψ
2

n̂y� (173)

qz � sin
ψ
2

n̂z� (174)

The parameters of the axis of rotation n̂x� n̂y and n̂z can be determined by the
algorithm on page 30, the angle of rotation ψ can be determined by the algorithm
on page 26.

Note that since 0� ψ� π (cf. (103)) q0 is always greater or equal to zero.

5.3 Comparison of neighborhoods in the quaternion and axis
and angle parameterization

Although we use the same algorithms to determine quaternion parameters and the
parameters in the axis and angle representation we will argue that the quaternion
parameterization is more suited for the Hough table approach to registration as
described in [2]. The reason for this can be best explained by a visualization of
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qy

qx

qz (-1,+1,+1)

(+1,-1,+1)

qy

qx

qz

Figure 3: The neighborhood of a rotation near the identity transformation in the
quaternion parameterization with parameters qx�qy and qz: (left) in the parameter
space, (right) in the Hough table. Since there is no relevant difference between
the representations in the parameter space and the Hough table (in contrast to the
axis and angle parameterization) both representations can be combined (see also
Fig. 5).

the parameter space of an axis and angle parameterization (see Fig. 1). As already
mentioned the structure of the axis and angle parameter space can be visualized by
associating each rotation with a three dimensional vector v � ψ�n pointing in the
direction of the rotation axis with magnitude equal to the angle of rotation ψ. If
we are now close to the origin, which means close to the identity transformation,
the neighborhood of a rotation can be extended to an area around the origin. But if
we use spherical coordinates, as it is done in the axis and angle parameterization,
the points in this area take on all values in their definition range. Therefore, if
we use the axis an angle parameters as indices in a Hough table the neighborhood
of the identity transformation is spread over the whole plane in the Hough table
belonging to an angle of rotation ψ� 0 (see Fig 2).

In the quaternion parameterization we use the cartesian coordinates of the
points in the neighborhood of the origin. Since in cartesian coordinates the origin
is no extraordinary point, we have not the ambiguities as in the axis and angle case
(see Fig. 3).

As already mentioned in Sec. 4, because of the redundancy R�n̂�π� �Rn̂�π�,
two points in the axis and angle parameterization on the surface of the parameter-
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y

x

z

Figure 4: The neighborhood structure of the axis and angle parameterization fol-
lowing from the redundancy R�n̂�π� �Rn̂�π� visualized in the parameter space.

izing sphere on opposite ends of a diameter are equivalent to each other. From this
fact it follows a somewhat involved neighborhood structure in the parameter space
(see Fig. 4) that would also be present in a Hough table, i.e. when the parame-
ters are used as indices in a 3-dimensional table: the neighborhood is divided into
two separated areas in the parameter space. Since the quaternion parameterization
is an axis and angle parameterization in cartesian coordinates, there is the same
neighborhood structure in the quaternion parameterization (compare Fig. 5).

It is worth to mention that, since there is no relevant difference between the
representations of quaternion parameters in the parameter space and in the Hough
table, it is possible to combine both representations (see Fig. 3 and Fig. 5).

6 Final Conclusions

The best way to avoid problems with the determination of rotation parameters
from a given rotation matrix is to choose a parameterization that has no principal
problems in determining these parameters. The quaternion parameterization is
such a parameterization. It has no problems for rotations near the identity trans-
formation as it is the case for an axis and angle parameterization and there are
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(-1,+1,+1)

(+1,-1,+1)

qy

qx

qz

qy

qx

qz

(-1,+1,+1)

(+1,-1,+1)

(b)

(-1,+1,+1)

(+1,-1,+1)

qy

qx

qz

(a) (c)

Figure 5: The neighborhood structure of quaternion parameters qx, qy, qz in the
Hough table. Only Hough table cells in the sphere correspond to rotations. The
neighborhood is visualized as a cube and not as a sphere since in the Hough table
the neighborhood is given as a cube. (a) The usual case with trivial neighborhood
structure. (b) In the vicinity of the identity transformation there is also a trivial
neighborhood structure in contrast to the axis and angle parameterization. (c)
In the vicinity of rotations by an angle π about an arbitrary axis of rotation the
neighborhood structure is somewhat involved.

also no problems for other parameter configurations as it is the case for Euler an-
gle like parameterizations. Nevertheless the quaternion parameterization suffers
from a complicated neighborhood in the vicinity of rotations about an rotation
angle π.

Another drawback of the quaternion parameterization for the Hough table ap-
proach to registration as described in [2] is the high memory consumption of a
Hough table using quaternion parameters: since only Hough table cells belonging
to the sphere in Fig. 5 correspond to rotations, the Hough table as the bounding
box of the parameter sphere needs nearly twice as much cells as are really needed
for rotations because the overhead can be estimated as

�2r�3� 4π
3

r3 �

�
8� 4π

3


r3 �

�
2

4π
π
� 4π

3


r3

π�3� 4π
3

r3
� (175)

Certainly, it is possible to avoid the memory overhead by some advanced rules
which map cells inside the sphere to the computer memory but this would com-
plicate the neighborhood of rotations even more and even for rotations that have a
trivial neighborhood structure with the approach described till now.
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Therefore in Subsec. 2.5 we proposed a compromise between the high mem-
ory consumption of a usual quaternion parameterization and the difficulty of a
sophisticated map from permitted Hough cells to the computer memory: in the
first iteration of the Hough table approach we suggest a quaternion parameteriza-
tion with the disadvantage of a high memory consumption, respectively a slower
convergence rate, since we have to choose a rougher Hough cell resolution be-
cause memory resources are a limiting factor. After detecting the correct Hough
peak by an additional analysis of the neighborhood of each Hough cell we change
for further iterations to an Euler angle like parameterization that has no parame-
terization problems in the vicinity of the detected Hough peak. Since the critical
parameterizations in the Euler angle like parameterizations are far away from each
other (see appendix A), such a parameterization can always be found. In this way
we have a simple Hough table structure over all iterations of the algorithm. Only
in the first iteration it is possible that the correct detection of the Hough peak can
become a little bit involved if the Hough peak corresponds to a rotation near π
about an arbitrary axis of rotation. But there is no real problem in determining the
Hough peak even in this case.

A Relation between critical Euler parameter ranges

In Sec. 6 we claimed that the critical parameterizations in the Euler angle like
parameterizations are far away from each other. We want to give a proof for this
assertion.

In Subsec. 3.1 we demonstrated that the Euler angle parameters in the zyx-
Euler case are essentially determined from a given rotation matrix as

β
 � arcsinr02� (176)

α
 � arccos

�
r00

cos�arcsinr02�


� (177)

γ
 � arccos

�
� r22

cos�arcsinr02�


� (178)

Substituting in these equations the matrix entries ri j by the matrix entries as given
in the usual Euler angle parameterization (compare (1)) we get a relation between
the parameters in the zyx- and the zyz-Euler case,

β
 � arcsin�cosα sinβ� � (179)
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α
 � arccos

�
cosα cosβcosγ� sinα sinγ

cos �arcsin�cosα sinβ��


� (180)

γ
 � arccos

�
� cosβ

cos �arcsin�cosα sinβ��


� (181)

The critical range for β
 begins when it becomes difficult to determine α 
 and γ

due to a denominator in the arccos function that becomes close to zero. Therefore
if

cos �arcsin�cosα sinβ��� 0 (182)

� arcsin�cosα sinβ�� π
2
�
3π
2

(183)

� cosα sinβ� 1��1 (184)

� cosα sinβ� j1j (185)

we run into problems with β
. To become close to j1j with cosα sinβ, α has to be
near 0 or near π. Let us assume the worst case scenario6 α � 0 or α � π. In this
case we get from (179) for the relation between β
 and β

β
 �
β� (186)

Therefore if we take for the critical ranges of β the ranges �0��45�� and �180��45��180��
and if we take for the critical ranges of β
 the ranges ��90���90��45�� and
�90��45��90��, then we can be sure that if β is in one of its critical ranges, β
 will
be not.
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