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Computation of curvatures from 2.5D raster data
X. Laboureux, S. Seeger, G. Häusler

Curvatures are shift and rotation invariant local
features of an object surface, well suited for
object localization and recognition. Since they
are very sensitive to noise (2nd order
derivatives), a locally parametric surface
description is a convenient way to smooth the
noise. In this report we present how to
calculate the extremal curvatures at each point
of a parametric surface using partial
derivatives with respect to the surface
parameters. In a second step we show that the
matrix used to determine the partial derivatives
on 2.5D raster data is independent from the
location within the image, which facilitates
and speeds up the calculation of the
curvatures.

Given a parametrical surface description
( ) [ ]Tv)z(u, v), y(u,v),x(u,vu,P =

�

, the minimal

and maximal curvatures 2)1,(ii =κ  at

( )00 v,uP
�

 can be calculated as the eigenvalues
of the so called Weingarten map:
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E, F, G, L, M and N directly depend on the
first and second order partial derivatives to u
und v [1].

As 3D-sensors provide no surface description
but only point clouds, in order to calculate
partial derivatives we locally approximate at

each data point 0P
�

 a polynomial surface

through the points in the neighborhood Ω of 0P
�
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In this way the partial derivatives at 0P
�

 are

always proportional to one of the polynomial

coefficients [ ] 
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As our data have a raster structure, i.e. each

point kP
	

 can be written as ji,P



 where (i,j) are

the raster indices, an efficient way to determine
the coefficients LLL c,b,a  of these

polynomials defined at the point 
00 j,iP

�

is to

choose (u,v) at the positions of the

approximated points ji,P
�

 in the neighborhood

as (i-i0,j-j0): therefore for each component of

( )vu,P


 we have in a neighborhood of

JIN P ∆×∆=  points the PN  equations (for
example for the x-component)[2].

for max 0min 0max 0min 0 jjj,iii ≤≤≤≤  with:

Since this equation is linear with respect to the
coefficients, it can also be written as

xa =M  with [ ]T
210 ,...a,a,a=a ,

[ ]Tj,ij,ij,ij,i max 0max 0max 01max 0min 01min 0min 0min 0
x,x,...,x,x
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and the matrix M following in a straight
forward way from the last equation.
For a given polynomial order and a given
neighborhood size the matrix M is a constant

for all 
00 j,iP

�

 and has to be calculated only once.

If there are less polynomial coefficients than
equations (depending on both the order of the
polynomials and the size of the neighborhood)
we get an overdetermined system of equations
and therefore search for the corresponding
least-squares solution by minimizing

∑
∈
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ji,oo x)jj,ix(i:  with respect

to the polynomial coefficients La . Therefore

the quadratic system of equations 0
aL

=
∂
Φ∂

has to be solved, which can be written as

xa TT MMM =  so that the solution for a is:

( ) xa T1T MMM
−= .
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