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Abstract

The purpose of this paper is to present a survey of rigid registration (also called matching)
methods applicable to surface descriptions. As features are often used for the registration
task, standard feature extraction approaches are described in addition. In order to give the
reader a framework for his present registration problem, this report divides the matching
task into three major parts (feature extraction, similarity metrics and search strategies). In
each of them the reader has to decide between several possibilities, whose relations are in
particularly pointed out.

1 Introduction

Registration or equivalently matching is the process of bringing two data sets into best possible
alignment. This is reached by determining the transformation that transforms corresponding ar-
eas or points into each other. The terms best possible alignment and corresponding areas/points
of two data sets are intuitively quite easy to understand but need a precise mathematical
definition for a computational approach (see 6). Since features are one possibility to define
corresponding areas/points, we discuss in addition some feature extraction methods (see 4).
Features can be defined as modified data formed from a collection of the original data set
which might be combined in linear or non-linear ways [4].

In this section only registration methods applicable to surface descriptions are described. In
order to illustrate the above definitions, before starting the discussion of registration methods,
we present some typical examples of data sets, corresponding areas/points and transformations.

2 Examples of data sets to be registered

In the following examples we present three kinds of data structures:
- intensity pictures

I : (nx, ny) 7→ I[nx, ny] ∈ R , e.g. from photo cameras,
- surface descriptions (range images)

F : (nx, ny) 7→ (x[nx, ny], y[nx, ny], z[nx, ny])
T ∈ R3 , e.g. from a tactil or optical sensor,

- volume data
ρ : (nx, ny, nz) 7→ ρ[nx, ny, nz] ∈ R , e.g. from medical 3-D scanners like CT (Computer
Tomography), MR (Magnetic Resonance) or sonography (ultrasound) which show anatom-
ical structure, or PET (Positron Emitting Tomography), SPECT (Single Photon Emission
Computed Tomography) or MRS (Magnetic Resonance Spectroscopy) which show func-
tional and metabolic activity [29].



Intensity images and volume data sets are introduced in addition, since the registration methods
used in their areas may also be used for the registration of surfaces:

- Typical optical 3-D sensors supply in addition to a range image a pixel identical intensity
image. In this way the registration of the two intensity pictures is already sufficient to
match the underlying range images.

- Since iso-surfaces (ρ(nx, ny, nz) = const ) are often extracted to register volume data sets,
the registration methods used can be directly applied to the surface matching task.

Examples

• The data sets to be registered could be two intensity images of an object taken from
different viewpoints. Due to illumination variations between the images corresponding
points do not have the same intensities which makes the matching process even more
difficult. The searched transformation is a 3-D rotation and a translation also known as
rigid transformation. To find this transformation at least seven corresponding points in
the images have to be found. The related range image can be calculated from the given
intensity images [52].

• The data sets are two or more range images of an object taken from different viewpoints.
The searched transformation is a rigid one. With at least three corresponding points in
the range images the transformation can be found. In this way a complete model of the
object can be generated from several views [35].

• The data sets are two intensity images of different objects e.g. two different human faces.
Corresponding areas may be manually defined by features like eyes, the mouth and the
nose. The searched transformation depends on the application. For example, in a face
recognition system it may be useful to find the best rigid transformation between the two
given faces [33]. The magnitude of the difference decides whether the same face or different
faces are presented in the images. On the other hand for morphing (the smooth transition
from one data set into another) a non rigid transformation is searched which allows to
locally match all parts of the object in the two images to each other [18].

• The data sets are two range images of an object taken from the same viewpoint but at dif-
ferent times so that the object may have changed its shape in the meantime. For example
the object might be a human face before and after a dental operation [11]. Correspond-
ing areas result from features that can be detected in both range images and have not
changed in the meantime e.g. the eyes, the nose and/or the forehead. The searched trans-
formation depends again on the application. For example, if the detection of the post
operational swelling is to be visualized, it might be useful to find the rigid transformation
that transforms the unchanged parts of the object into each other. With the help of this
rigid transformation the difference volume of the two range images can be visualized. In
other applications it might be useful to parameterize the time variations of the object by
a non rigid transformation which allows to match all parts of the object in the two range
images to each other [15, 40]. Such a non rigid transformation can be a (global or local)
affine, projective or curved transformation [27], depending on the magnitude of difference
between the data sets.

• The data sets are two volume data sets of the same object measured by the same device
but at different times. With a rigid transformation variations of the object (e.g. a skull or
a brain) can be determined (e.g. to study the evolution of a disease) [27].

• The data sets are two volume data sets of different objects measured by the same device
(e.g. the heads of different patients). Corresponding areas seem obvious for a human being.
The searched transformation is a non rigid one. The registration of different patients’
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images could allow to contrast a healthy and a sick person [40].
• The data sets are two volume data sets of the same object measured by different devices,

e.g. a CT and a PET scan of the human head. It may be difficult even for a non expert
human being to define corresponding areas. The searched transformation is a rigid one
(e.g. to improve the diagnosis by using multimodality data) [26].

• The data sets to be registered can be of different dimensions, e.g. it is possible to match
an intensity image I : (nx, ny) 7→ I[nx, ny] ∈ R with a range image F : (nx, ny) 7→
(x[nx, ny], y[nx, ny], z[nx, ny])

T ∈ R3 of the same object [47]. The searched transformation
is a rigid one.

The above examples can be classified according to two basic criteria:
1. Nature and domain of transformation

• rigid (local, global)
• non rigid (local, global)

2. Modalities involved
• monomodal
• multimodal

Now we come to the presentation of several registration methods.

3 Overview of registration methods applicable to geom-

etry data

The task of determining the best spatial transformation for the registration of data sets can
divided into four major components [5]:
• feature space
• search space
• similarity metric
• search strategy.

The choice of feature space determines what is matched. Since features can be independently
found in each data set in a preprocessing step, the amount of data to be matched can thus be
reduced. Some examples are:

- raw data (intensities in intensity images, 3-D points in range images, density values in
volume data sets),

- attributes defined for all points: curvatures, principal frames, point signatures [15, 42, 10],
- special collections of points: edges, surfaces, crest lines [30, 7, 14, 40],
- salient point features: corners, line intersections, points of high curvature, extremal points

[36, 42],
- statistical features: moment invariants, centroids, principal axes; (they refer to measures

over a region that may be the outcome from a segmentation preprocessing step) [16],
- higher-level structural and syntactic descriptions [12, 51].

The search space is the class of transformations from which we want to find the optimal trans-
formation to align the data sets (global/local, rigid/nonrigid). The similarity metric determines
how matches are rated (e.g. sum of squared euclidian distances, normalized cross-correlation,
mutual information). The search strategy describes how to find this optimal transformation
and depends on the search space (e.g. ICP, Hough method (clustering), correlation, relaxation,
prediction-verification, indexing schemes, tree + graph matching).

We begin the discussion of registration methods by presenting the extraction of more so-
phisticated features like principal curvatures, point signatures, principal frames, crest lines and
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extremal points from surface descriptions. These features can be found in all kinds of free-form
surfaces and therefore are more general than corners or edges. In the whole discussion of reg-
istration methods we restrict ourselves to the search space of global rigid transformations (3-D
rotations + translations). Therefore we give an overview of representations of rotation with an
emphasis on quaternions. Then we present some widely used similarity metrics. At the end
we describe some search strategies, especially the ICP-algorithm and some of its extensions.
The ICP algorithm needs no feature extraction and has become the standard for the precise
registration of two point clouds.

4 Extracting features from surface descriptions

4.1 Principal Curvatures

Minimal and maximal curvatures (also called principal curvatures) are shift and rotation in-
variant local features of an object surface. Given a parametrical suface description p (u, v) =
(x(u, v), y(u, v), z(u, v))T , the principal curvatures κi (i = 1, 2) at p(u0, v0) can be calculated
as the eigenvalues of the Weingarten map (also called shape operator) [13],

(
E F
F G

)−1 (
L M
M N

)(
αi

βi

)
= κi

(
αi

βi

)
(1)

where E, F, G, L,M and N depend on first and second order partial derivatives to u and v at
p = p(u0, v0):

E = pu · pu , F = pu · pv , G = pv · pv,
L = puu · n , M = puv · n , N = pvv · n .

(2)

n is the normal at p(u0, v0),

n =
pu × pv

‖pu × pv‖ . (3)

It is straightforward to determine the curvatures κi from (1) as the roots of the characteristic
polynomial [49],

κ2 − NE − 2MF + LG

EG− F 2
κ +

LN −M2

EG− F 2
= 0. (4)

4.2 Principal frames

With the help of the components of the eigenvectors αi and βi the directions of minimal and
maximal curvatures can be determined as:

ei =
αipu + βipv

‖αipu + βipv‖ . (5)

It can be shown that the unit vectors e1 and e2 are perpendicular (e1 · e2 = 0). Since both e1

and e2 lie in the tangential plane (defined by pu,pv), they are perpendicular to the normal n
at p(u0, v0). Therefore e1, e2 and n define a local orthogonal frame at p(u0, v0) also called the
principal frame or trihedron. Note that the principal frame is not uniquely determined, since
there is no way to choose between the frames (e1, e2,n) and (−e1,−e2,n) [15].
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4.3 Crest lines

One of the principal curvatures is maximal in absolute value: it is called in [42] the largest
curvature κmax, in order not to be mistaken with the maximal curvature. The associated
principal direction is emax. Crest lines are the loci of the surface where the largest curvature
κmax is locally maximal (in absolute value) in the associated direction emax. In [42] crest
lines are extracted from volume data. Then a crest line is the intersection of an iso-surface
ρ(nx, ny, nz) = const with the implicit surface ∇κmax ·emax = 0 (i.e. change of κmax in direction
emax is zero, which implies that κmax is extremal in direction emax)

1.

4.4 Extremal points

For the definition of crest lines only the largest curvature with its associated principal direction
is used. In the same way there are also extremal lines associated with the curvature with
minimal absolute value. Extremal points are defined as the points of intersection of such
extremal lines with crest lines. In [42] extremal points are extracted from volume data. Then
an extremal point is the intersection of an iso-surface ρ(nx, ny, nz) = const with the implicit
surfaces ∇κ1 · e1 = 0 and ∇κ2 · e2 = 0. Note that the extremal points are generally not the
points of the extremal lines whose curvature is locally maximal. It is only stated here that
there are 16 different types of extremal points that can be distinguished. In addition there
are several geometric invariants associated with extremal points: the geometric invariants of
the surface (principal curvatures), the geometric invariants of the extremal lines (curvature,
torsion) and the geometric invariants corresponding to the relative position of the extremal
lines with respect to the underlying surface [42].

In order to extract all these features, partial derivatives have to be calculated on the given
data. If no parametrical surface description but only point clouds are given, in order to calculate
partial derivatives usually a polynomial surface is locally approximated at each data point. In
this way the partial derivatives are always proportional to one of the polynomial coefficients
[24, 49].

4.5 Point signatures

Similar to principal curvatures this kind of rotation and translation invariant feature can be
defined for each surface point but with the great advantage that no derivatives have to be
calculated [10]: For a given surface point p a sphere of radius r, centered at p, is placed. The
intersection of the sphere with the object surface is a 3-D space curve C, whose orientation can
be defined by an orthonormal frame formed by a ”normal” vector n1, a ”reference” vector n2,
and the cross-product of n1 and n2. n1 is defined as the unit normal vector of a plane P fitted
through the space curve C. In the limit r tends to zero, n1 approximates the surface normal at
the point p. A new plane P ′ can be defined by translating the fitted plane P to the point p in
a direction parallel to n1. As well, if r tends to zero, P ′ approximates the tangential plane. The
perpendicular projection of C to P forms a new planar curve C ′. The distances of the points
of C to the corresponding projected points of C ′ form a signed distance profile that is called
the signature of the point p in [10]. The reference direction n2 is defined as the unit vector
from p to the projected point on C ′ which gives the largest positive distance. Note that n2 is
orthogonal to n1 since it lies on P ′.

1Of course crest lines can also be directly calculated on surface descriptions.
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4.6 Extended Gaussian Image (EGI)

The EGI is another way to represent the data of a surface data set. In this approach [19] the
normal vector at each point of the data set is computed and mapped into a unit sphere where
its tail is at the center of the sphere and its head lies on the surface. In addition each point on
the surface of the sphere (i.e. head of a normal vector) is weighted by the Gaussian curvature
of the corresponding point of the surface data set. In this way the EGI can be considered as
the weighted orientation histogram of the data set.

This representation of the data sets has two interesting properties for the pose estimation
problem:
• it is translation invariant,
• the EGI rotates in the same way as the corresponding data set.

Therefore the problem of finding the transformation in the 6-dimensional parameter space of
rotations and translations can be divided into two reduced problems:

1. Finding the right rotation with the help of the EGI.
2. Finding the right translation with the help of an additional method.

However such an EGI approach assumes that the mapping between a point in the data set and
a point on the sphere is uniquely defined. It can be shown that this is only the case if the
object is convex.

One approach in which the distances from each data point to a given origin are additionally
saved in each correspondence point on the sphere is the Complex EGI [23]. Note that also an
extension to the EGI which can deal with all classes of surfaces, called UNSDLA, has already
been formulated [25].

5 Representations of rotation

There are many ways to represent rotation. Some examples are: Gibbs vector, Euler angles
[43], Pauli spin matrices [43], axis and angle [43], Cayley-Klein parameters [17], orthonormal
matrices [43] , quaternions [20] and dual number quaternions [54]. Since quaternions are widely
used in the computer vision community we want to give a short introduction. Some more
details can be found in [20]. In the context of registration they are often used for a closed form
solution to the problem of minimizing the least-squares sum of corresponding points.

A quaternion q̇ can be represented in the complex number notation

q̇ = q0 + iqx + jqy + kqz (6)

with real part q0 and three imaginary parts qx, qy, qz. For the imaginary units i, j, k the following
equations hold:

i2 = −1, j2 = −1 k2 = −1,
ij = k, jk = i, ki = j,
ji = −k, kj = −i, ik = −j.

(7)

With (7) the multiplication of quaternions ṙ and q̇ can be defined in terms of the products of
their components,

ṙq̇ = (r0q0 − rxqx − ryqy − rzqz)

+ i (r0qx + rxq0 + ryqz − rzqy)

+ j (r0qy − rxqz + ryq0 + rzqx)

+ k (r0qz + rxqy − ryqx + rzq0) .
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In general ṙq̇ 6= q̇ṙ.
The dot product of two quaternions is the sum of products of corresponding components:

ṗ · q̇ = p0q0 + pxqx + pyqy + pzqz. (8)

The square of the magnitude of a quaternion is the dot product of the quaternion with itself:

‖q̇‖2 = q̇ · q̇. (9)

A unit quaternion is a quaternion whose magnitude equals 1.
The conjugate of a quaternion negates its imaginary parts:

q̇∗ = q0 − iqx − jqy − kqz. (10)

Vectors can be represented by purely imaginary quaternions. If r = (x, y, z)T , we can use
the quaternion

ṙ = 0 + ix + jy + kz. (11)

Scalars can be similary represented by using real quaternions.
Using the fact that only rotations preserve dot products and cross products, we can represent

a rotation by a quaternion if we can find a way of mapping purely imaginary quaternions (that
represent vectors) into purely imaginary quaternions in such a way that dot and cross products
are preserved. It can be shown that the composite product

ṙ′ = q̇ṙq̇∗, (12)

where q̇ is a unit quaternion, transforms the imaginary quaternion ṙ into an imaginary quater-
nion ṙ′ and preserves the dot and cross products between ṙ and a second imaginary quaternion
ṙ2. Since

(−q̇) ṙ (−q̇∗) = q̇ṙq̇∗ (13)

−q̇ represents the same rotation as q̇.
It is straightforward to verify that the composition of rotations corresponds to multiplication

of quaternions:

ṙ′′ = ṗṙ′ṗ∗

= ṗ (q̇ṙq̇∗) ṗ∗
···
= (ṗq̇) ṙ (ṗq̇)∗ .

The overall rotation is represented by the unit quaternion ṗq̇.
It may be of interest to note that it takes fewer arithmetic operations to multiply two quater-

nions than it does to multiply two 3× 3 matrices. Also, since calculations are not carried out
with infinite precision on a computer the product of many orthonormal matrices may no longer
be orthonormal, just as the product of many unit quaternions may no longer be a unit quater-
nion. However it is trivial to find the nearest unit quaternion, whereas it is quite difficult to
find the nearest orthonormal matrix.

Unit quaternions are closely related to the geometrically intuitive axis and angle notation.
A rotation by an angle θ about the axis defined by the unit vector e = (ex, ey, ez)

T can be
represented by the unit quaternion

q̇ = cos
θ

2
+ sin

θ

2
(iex + jey + kez) . (14)
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The relation of a unit quaternion q̇ to the familiar orthnormal rotation matrix R is given by

R =




(
q2
0 + q2

x − q2
y − q2

z

)
2 (qxqy − q0qz) 2 (qxqz + q0qy)

2 (qyqx + q0qz)
(
q2
0 − q2

x + q2
y − q2

z

)
2 (qyqz − q0qx)

2 (qzqx − q0qy) 2 (qzqy + q0qx)
(
q2
0 − q2

x − q2
y + q2

z

)


 . (15)

Finally we want to note that a 3-D rigid motion (rotation + translation) can also be represented
by a special dual quaternion. A dual quaternion or dual number quaternion q̂ consist of two
quaternions q̇ and ṡ so that

q̂ = q̇ + εṡ, (16)

where a special multiplication rule for ε is defined by ε2 = 0. In order to represent a 3-D rigid
motion the following two constraints have to be satisfied:

q̇ · q̇ = 1 and q̇ · ṡ = 0. (17)

6 Typical similarity metrics

The problem of aligning two data sets could be generally defined in the following way: Given two
data sets u(x ′) and v(x ) describing parts of the same object at x ′ in the ”u-frame” respectively
x in the ”v-frame”, i.e.

v(x ) = F (u(x ′)) (18)

where F is the transfer function from u to v, we want to find the pose transformation T from
x to x ′, i.e.

x ′ = T (x ). (19)

Combining (18) and (19) this is equivalent to resolve

v(x ) = F (u (T (x ))) ∀x . (20)

In general it is difficult to determine the transfer function F .

6.1 Correlation

However, if the effects of F can be neglected, e.g. u, v are intensity images from different views
by negligible illumination variations between u and v, we get

v(x ) = u (T (x )) ∀x . (21)

Due to noise, different occlusions and partial overlapping a solution T valid for all x cannot be
found. Therefore it is a common way to search for the transformation T that minimizes

E(T ) =
∑
x

[v(x )− u (T (x ))]2 (22)

=
∑
x

[v(x )]2 −
∑
x

2v(x )u (T (x )) +
∑
x

[u (T (x ))]2 . (23)

Such a function that determines the ideal model parameters as the arguments that maximizes
or minimizes the function is also often called a cost function or objective function. Since the
first term in (23) is independent of T , minimizing E(T ) is equivalent to maximizing

C(T ) =

∑
x v(x )u (T (x ))∑
x [u (T (x ))]2

, (24)
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called the normalized cross-correlation function [5]. A related measure, which is advantageous
when an absolute measure is needed, is the correlation coefficient

C̃(T ) =

∑
x [v(x )− µv] [u (T (x ))− µu]√∑

x [v(x )− µv]
2 ∑

x [u (T (x ))− µu]
2

(25)

where µu and µv are the mean values of u and v. The denominator is given by the product of
the standard deviations of u and v.

6.2 Mutual information

In the case where the effects of F must be taken into account, e.g. if u represents the normals at
each point of a 3-D scan and v the corresponding intensity image, more sophisticated methods
have to be applied. u and v can be interpreted as random variables with probability distributions
Pu and Pv. Intuitively if u and v are well aligned the randomness of u given knowledge of v is
maximally reduced. In statistics this intuition can be formalized as follows.

Firstly the randomness of a random variable X is measured by its entropy, defined by

H (X) ≡ −EX {log (P (X))} . (26)

Thereby EZ {Z} is the expected value of random variable Z and P (X) the probability distribu-
tion of X. Secondly the randomness of random variable Y given knowledge of random variable
X is measured by the conditional entropy

H(Y |X) ≡ −EX {EY {log P (Y |X)}} . (27)

Then the intuition stated above can be formulated as maximizing

I (u(x ), v (T (x ))) = H (u(x ))−H (u(x )|v (T (x ))) , (28)

called the mutual information of u and v [46, 47].

6.3 Least-squares sum of corresponding points

In the special case where the data sets are two point clouds {pi} and {p ′i} of an object measured
by a 3-D sensor from two different viewpoints we describe the standard similarity metric in more
details. For every pair of corresponding points pi and p ′i we want to find the rotation R and
translation t so that

pi = Rp ′i + t (29)

with p = (x, y, z)T . For convenience we write (29) as

pi = T (p ′i) (30)

with the transformation T defined by

T (z ) = Rz + t . (31)

The transformation T has six free parameters (e.g. three angles, three translation parameters).
With at least three point correspondences of type (30) these six parameters are uniquely de-
termined. However due to noise in the measurements the transformation calculated from three
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arbitrary point correspondences is not the best one. To find the best transformation usually
the least-squares solution to the overdetermined system of equations (30) is searched,

∑
i

‖pi − T (p ′i)‖2 −→ minimum. (32)

We want to give a statistical explanation of (32) as the maximum likelihood model selection
[46]. Our point sets {pi} and {p ′i} can be interpreted as a sample a = [. . . {pi,p

′
i} . . .] of

the vector random variables X ′ and the functionally dependent vector random variable X =
T (X ′) + η, which is assumed to be perturbed by Gaussian measurement noise described by
η. The likelihood of the sample is the conditional probability of the sample given the random
variables X ′ and X and a model of their functional dependence X̂ = T (X ′), i.e.

p
(
a | X̂ = T (X ′)

)
≡ p

(
{X ,X ′}1 = {p1,p

′
1},

{X ,X ′}2 = {p2,p
′
2}, . . . | X̂ = T (X ′)

) (33)

=
∏

(pi,p′i)∈a

pi

(
X = pi | X̂ = T (p ′i)

)
(34)

where we have assumed in (34) that the trials of the sample are independent. With the help of
Bayes’ law we can find the most likely model given the sample,

p
(
X̂ = T (X ′) | a

)
= p

(
a | X̂ = T (X ′)

) p
(
X̂ = T (X ′)

)

p (a)
, (35)

by maximizing p
(
X̂ = T (X ′) | a

)
with respect to the parameters of T . The unconditional

probability of the sample p(a) could be arbitrary, since the sample is the same for all mod-
els. It is the assumption made by a maximum likelihood model selection that the prior

probability of the model p
(
X̂ = T (X ′)

)
is the same for all models that are evaluated, i.e.

p
(
X̂ = T (X ′)

)
is constant. Therefore maximizing p

(
a | X̂ = T (X ′)

)
is equivalent to max-

imizing p
(
X̂ = T (X ′) | a

)
. To simplify the maximization of p

(
a | X̂ = T (X ′)

)
from (34),

usually the logarithm is taken which does not influence the position of the maximum since the
logarithm is a monotonic function. So instead of (34) we maximize

log p
(
a | X̂ = T (X ′)

)
=

∑

(pi,p′i)∈a

log pi

(
X = pi | X̂ = T (p ′i)

)
. (36)

We assume that the differences between the predicted points p̂i = T (p ′i) and the actual trials
of X are Gaussian,

pi

(
X = pi | X̂ = T (p ′i)

)
= gψi

(pi − T (p ′i)) (37)

with

gψ (z ) ≡ 1

(2π)
3
2 |ψ| 12

exp

(
−1

2
z T ψ−1z

)
, (38)

where ψ is the covariance matrix of the random vector η = X − X̂ and |ψ| its determinant.
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Using (37) in the expression for log p
(
a | X̂ = T (X ′)

)
from (36) we get

log p
(
a | X̂ = T (X ′)

)
= −1

2

∑

(pi,p′i)∈a

log
(
(2π)3|ψi|

)

− 1

2

∑

(pi,p′i)∈a

(pi − T (p ′i))
T

ψ−1
i (pi − T (p ′i)) .

(39)

Therefore maximizing p
(
a | X̂ = T (X ′)

)
is equivalent to minimizing

∑

(pi,p′i)∈a

Dψi
(pi − T (p ′i)) , (40)

where
Dψ (z ) = z T ψ−1z (41)

is the so called squared Mahalanobis distance. Assuming that all ψi are diagonal with equal
variances on the diagonal (σ2

i = ψi11 = ψi22 = ψi33), we get from (40) the standard weighted
least-squares problem also known as the chi-square fitting problem [32],

χ2 =
∑

(pi,p′i)∈a

‖pi − T (p ′i)‖2

σ2
i

. (42)

Assuming that all σi are equal, the simple least-squares problem (32) follows directly from (42).
Let us continue with the solution to the weighted least-squares problem (42). Using the

explicit form of the transformation T from (31) we have to minimize,

∑
i

1

σ2
i

‖pi −Rp ′i − t‖2
. (43)

If using Euler angles for the representation of R, the rotation will be given by the following
matrix product,

R =




cos α − sin α 0
sin α cos α 0

0 0 1







cos β 0 sin β
0 1 0

− sin β 0 cos β







cos γ − sin γ 0
sin γ cos γ 0

0 0 1


 . (44)

Therefore the parameters α, β, γ are not quadratic in (43) and the solution to the minimization
problem cannot be reduced to a simple system of linear equations (by calculating the partial
derivatives with respect to the parameters and setting them to zero i.e. solving the so called
system of normal equations). Such least-squares problems are also called nonlinear least-squares
problems. Of course the problem can be solved by standard optimization techniques like gra-
dient descent, conjugate gradients, Newton’s method or the Levenberg-Marquardt algorithm
(that has become the standard technique for nonlinear least-squares problems [32]). Amazingly
there are however closed form solutions to this problem that are significantly faster (2 to 5
times dependent on the number of point correspondences) than iterative approaches [1]. The
known solutions are based on
• singular value decomposition2 (SVD) [1, 22, 45],

2The SVD method used here should not be confused with the standard SVD method which is used in favor
of solving the system of normal equations when we have a linear least-squares problem. Here a completely
different matrix is decomposed.
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• quaternions [20, 14],
• dual number quaternions [48, 54],
• orthonormal matrices/polar value decomposition [21, 22].

Let us present the SVD based method (refer to [32] for a motivation of the term SVD) in some
details.

To simplify the problem in (43) it is convenient to compute the centroids of each point set
and translate the point clouds so that the centroids coincide at the origin. In this way, in order
to get the parameters of the rotation, we only have to minimize3,

∑
i

1

σ2
i

‖pi −Rp ′i‖2
. (45)

The translation can then be calculated as the difference between the centroids[20]. Expanding
the square in (45) results in

∑
i

1

σ2
i

(
‖pi‖2 − 2pT

i Rp ′i + ‖Rp ′i‖2
)

. (46)

The first term in (46) does not depend on R. Since a rotation is an operation that preserves
lengths, i.e. ‖Rp ′i‖ = ‖p ′i‖, only the second term depends on R. Therefore minimizing (46) is
equivalent to maximizing ∑

i

1

σ2
i

pT
i Rp ′i. (47)

Using the relation for two vectors a and b that aTb = trace
(
abT

)
and the fact that the trace

of a matrix product is cyclic, trace (AB) = trace (BA) for matrices A and B , (47) can be
rewritten as

trace
(
RTK

)
(48)

where the so called correlation matrix K is defined by

K =
∑

i

1

σ2
i

pip
′
i
T
. (49)

Solutions to the maximization problem in (48) can be found based on singular value decomposi-
tion (SVD), polar value decomposition or quaternions. Based on singular value decomposition,
we decompose the correlation matrix K into the form

K = UΛV T (50)

where U and V are 3×3 orthonormal matrices, and Λ is a 3×3 diagonal matrix with nonnega-
tive elements, the so called singular values. An algorithm for performing such a decomposition,
which is a standard task in numerical mathematics, can be found in [32]. Now the matrix

Rmax = UV T (51)

maximizes (48) due to the following lemma:
Lemma: For any positive definite and symmetric matrix A and any orthonormal matrix B ,

trace (A) ≥ trace (BA) . (52)

3From now on pi and p ′i are relative to the centroids of the point sets.
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A simple proof for this lemma based on the Schwarz inequality can be found in [1]. A is given
in our case by RT

maxK (compare (48)) which fulfills the conditions of the lemma since

RT
maxK = VU TUΛV T (53)

= VΛV T (54)

is symmetrical and positive definite. Thus, due to the lemma, for any 3× 3 matrix R,

trace
(
RT

maxK
) ≥ trace

(
RRT

maxK
)
, (55)

so that RT
max really maximizes (48)4.

7 Search strategies

7.1 Hough method

Before presenting the application of the Hough method to the registration of 3-D point sets,
we describe its basic idea in a general framework.

Let {xi}i=1...N , xi ∈ Rl be a data set and {qj}j=1...m , qj ∈ R a parameter set related by a
function f : Rm × Rl → Rw

f (q1, . . . , qm,xi) = 0 ∀i. (56)

In addition let suppose that all parameters qi are uniquely determined by a subset of k samples
of {xi}i=1...N

{xi}i=1...k ⇒ q1, . . . , qm. (57)

We search for the parameters {qj}j=1...m which realize (56) ”as best as possible”5 for all xi.
Now for the Hough method the following steps have to be performed: For each subset of k

samples of {xi}i=1...N (there are N !
(N−k)!k!

possibilities) the parameters q1, . . . , qm are calculated

and at the corresponding position (q1, . . . , qm) in a m-dimensional accumulation table (Hough
table) a counter is incremented by one. In this way every subset of k samples of {xi}i=1...N

resulting in the same parameter set q1, . . . , qm contributes to the same position counter in the
table. Therefore the position whose counter has the highest score corresponds to the parameter
set that is in best accordance with the given data set {xi}i=1...N .

To illustrate the Hough method we give a simple example: Let {xi}i=1...N be a set of 2-
D points x = (x, y)T from an intensity image which are the outcome of a feature detection
algorithm. Assume we know that some of the xi describe circles in the original intensity image
but we do not know which ones. We want to find the centers of the circles and their radii.
Thus the searched parameters qi , i = 1, . . . ,m = 3 are the center position coordinates xc and
yc, and the radius R. For each point on a circle the following equation holds:

(x− xc)
2 + (y − yc)

2 −R2 = 0. (58)

Therefore (58) determines the function f from (56). Since three points uniquely define a circle,
k = 3 in the general description above. If we now apply the Hough method we will find the
circles present in the data from the positions of the accumulations in the 3-dimensional Hough
table.

4Since orthonormal matrices build a group (the so called SO(3)) [43] RRT
max represents an arbitrary or-

thonormal matrix if R also represents an arbitrary orthonormal matrix.
5The cost function is defined by the method itself.
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We now apply the Hough method to the registration of two 3-D point sets {pi} and {p ′i} of
extracted point features. {xi}i=1...N is in this case the set of tupels (p,p ′) of all combinations
of points from the first set with points from the second set. The searched parameters are the
m = 6 parameters of the rigid transformation (R, t) between both point sets, so that f from
(56) is defined by

Rp ′ + t − p = 0 . (59)

Since three non-collinear points uniquely define the 6 parameters of R and t , k = 3 in the
general description. Applying now the Hough method all transformations calculated from
correct point correspondences result in the same transformation while all other transformations
are distributed more or less randomly in the parameter space. As well as above the points of
accumulation give us the right parameter set. Note that in the case where the Hough method
is used to find the parameters of a transformation the method is also often called clustering
[37].

7.2 Correlation

In the previous section we have already introduced the similarity metric correlation (24) that
has to be maximized with respect to the transformation T

C(T ) =

∑
x v(x )u (T (x ))∑
x [u (T (x ))]2

.

One way to find the correlation maximum is to compute C(T ) for all possible transformations T .
Since the number of possibilities may be very large, the complete search in the parameter space
may not be feasible. For example, if T is a 3-D rigid transformation (rotation + translation)
and each of the d = 6 dimensions of the parameter space is divided in M quantization steps, the
expression in (24) has to be computed Md times. Thus the complexity of such a calculation is
MdN , if N is the number of points in each data set. M determines the accuracy of the approach
but can be reduced – when using the outcomes of a previous feature extraction process – by
only considering the transformations that are in accordance with the extracted features. In
addition, in order not to make the complexity prohibitively large, N and d have to be small.
N can be reduced by only using data within a small window, usually called a template.

Let us present a typical example: Given two intensity images I1 and I2 describing parts of the
same object (d = 3: 2 translations, 1 rotation), in which M1 and M2 features (e.g. corners) have
been respectively extracted, we want to match them by finding corresponding features in I1 and
I2. Using point features limits the search in the translation parameter space: only translations
between extracted features are allowed. The neighborhood within a window centered at each
extracted feature F1 in I1 is correlated with the neighborhood at every extracted feature F2 in I2,
i.e. expression (24) has to be calculated M1M2M times where M is the number of quantization
steps in the rotation dimension. Using a window of size nx × ny = Nw the complexity of the
correlation calculation is then M1M2MNw.

7.3 Relaxation

Relaxation is a technique to resolve ambiguities between match candidates of two data sets.
These candidates are the outcomes of a feature extraction process. There are ambiguities
between the match candidates since in general a given feature attribute does not uniquely
determine a candidate. Even after using a correlation technique for simple point features as
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described above, a feature point in the first data set may be paired to several feature points in
the second data set.

To overcome these ambiguities for a given feature the relaxation technique makes in addition
use of relations (to features in the neighborhood) which are ”more or less” preserved under
the considered transformation. For point features these relations are typically the distances
between two features in the same data set [52]. A further possibility could be the angles formed
by three features. Since distances between features in intensity images (taken from 3-D objects)
are distorted by perspective projections, these relations are only invariant for point features
close to each other.

For the relaxation technique a similarity measure for each pair of match candidates is defined
based on the following three criteria:

1. the goodness of the considered pair of match candidates (e.g. provided by correlation
scores or the difference between feature attributes),

2. the goodness of all possible pairs of match candidates in the respective neighborhoods,
3. the agreements of the relations between the considered feature and the features in the

neighborhood in the first data set with those in the second data set.
These similarity measures are iteratively changed by updating the relations defined in the third
criterion until they converge. The relations are updated by successively canceling pairs of match
candidates which have not reached a large similarity measure in the previous iteration.

Let us illustrate the relaxation approach in continuing the example presented in the previous
paragraph: The correlation provides for each possible pair of match candidates (F1i, F2j), where
F1i and F2j are extracted features in I1 and I2 respectively, a measurement of the goodness
c(F1i, F2j) mentioned in the above criteria 1 and 2. The similarity measure S can be expressed
as

S(F1i, F2j) = c (F1i, F2j)
∑

F1k∈ΩF1i

∑
F2l∈ΩF2j

c (F1k, F2l) δ (F1i, F2j, F1k, F2l) (60)

where ΩF1i
and ΩF2j

are the neighborhoods around F1i and F2j respectively, and δ(. . .) is a
function describing the agreement of the relations between (F1i, F1k) and (F2j, F2l). During
the updating process some of the function values are set to zero and enable in this way a
recomputation of a new similarity measure until all correspondences between match candidates
are fixed.

7.4 Indexing schemes

In general indexing schemes precompute invariant feature values (e.g. principal curvatures,
point signatures) in a data set and hash them into a look-up table (called hash table) with
references to the corresponding feature positions [10]. In order to match two data sets {xi} and
{x ′i} the following steps are performed:
• Firstly the extracted invariant feature values in {xi} are hashed in a table.
• Secondly for each point feature in {x ′i} with feature values (v1, ..., vn) we find the possible

corresponding positions in {xi} (match candidates) by taking the points at the position
(v1, ..., vn) in the hash table.

• Thirdly to resolve ambiguities for the match candidates a relaxation, Hough or prediction-
verification method is applied.

The advantage of the hash table is the access to possible match candidates in constant time.
A more sophisticated indexing scheme is geometric indexing [53]. In this case the indexing

scheme is based on the geometrical relationships between extracted features. For each extracted
point feature in the first data set {xi} a basis for a coordinate frame is defined with the help
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of further extracted point features (e.g. in 3-D space two other point features are necessary).
Then the coordinates of all other point features are calculated with respect to this basis and are
hashed into a look-up table which stores the k-tuple of features defining the basis. This is done
for all combinations of point features defining a basis (e.g. for M extracted features in the first
data set there are M(M − 1)(M − 2) possibilities to define a basis in 3-D space and for each
basis M feature coordinates have to be determined). In the second data set point features are
similary extracted and an arbitrary basis B′1 formed by a k-tuple of features is chosen. Then
all features Fi ∈ {xi} are computed with respect to this basis, resulting in the coordinates
(x1, . . . , xn)i. For each coordinate vector we find at the position (x1, . . . , xn)i in the hash-table
several basis from the first data set which can possibly correspond to the basis B′1. Each time
a basis occurs it is voted for by incrementing a counter. After processing all coordinate vectors
the basis with the highest vote is considered as a corresponding basis to B′1. This hypothesis
can be confirmed with a prediction-verification scheme working on the whole data set. If the
verification fails another basis B′2 will be chosen and tested in the same way.

7.5 Prediction-verification

The principle of a prediction-verification scheme is quite similar to the correlation approach:
Just calculate a given similarity metric for a certain transformation. However there are some
differences in practice:
• In the case of correlation all possible transformations are tested; in prediction-verification

only the transformations resulting from a preprocessing step (e.g. from an indexing scheme
or a feature based approach) are verified.

• In the case of correlation the transformation reaching an extremal value of the similarity
metric (e.g. the minimal value of (22) or maximal of (24)) is accepted as the correct one; in
prediction-verification the first transformation resulting in a value of the similarity metric
better than a given threshold is considered as the right one.

• In the case of correlation in order to reduce the complexity the calculation is usually only
applied to extracted features; in prediction-verification the transformation of the whole
data set provides the most reliable verification.

Some examples for prediction-verification schemes can be found in [42, 10, 15].

7.6 Tree + graph matching

After a feature extraction preprocessing step a data set can be described by a tree (also called
graph), where the nodes are defined by the features and the links by their geometrical relations.
The matching of two data sets is then reduced to the mapping of two graphs. This search process
is often called subgraph isomorphism. Some examples can be found in [51, 9].

7.7 Standard optimization techniques

The previously described search strategies are based on extracted features whenever they are
used in practical applications. Otherwise their complexity would be too high. By contrast,
standard optimization techniques try to find an extremum of a given similarity metric taking
into account the whole data sets. An extremum can be either global or local. Although there is
in practice till now no guarantee to find the global extremum, a few approaches deal with this
problem: for example mean field theory [38], genetic algorithms [6] and simulated annealing
[35, 32]. However, if a ”good estimation” of the transformation between two data sets is known
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there are several standard approaches to find the global extremum. A ”good estimation”
means in this context that the local extremum to which the method converges is in fact the
global extremum. These techniques usually base on gradient information of the cost function.
Typical examples are gradient descent (also called steepest descent), conjugate gradients or the
Levenberg-Marquardt algorithm [32].

7.8 ICP algorithm

In the subsection 6.3 we have mentioned that it is straightforward to find the best rigid trans-
formation between two point clouds by minimizing (32)

∑
i

‖pi − T (p ′i)‖2
(61)

where pi and p ′i are corresponding points. However the point correspondences are not known
in advance. In the case where the given data sets are already well aligned to each other
(this should be possible with one of the feature based methods described above), the following
heuristic assumption may be reasonable: Corresponding points are the closest points between
two given data sets. In this way (61) can be directly derived from the correlation expression
(22) by setting

v(x ) = min
p′k∈{p′i}

(‖p ′k − x‖) , (62)

u (T (x )) = min
pj∈{pi}

(‖pj − T (x )‖) (63)

and by restricting the sum over all x in (22) to the data set {p ′i}. Thus we get v(x ) = 0 and
(22) becomes

∑

x∈{p′i}

(
min

pj∈{pi}
‖pj − T (x )‖

)2

. (64)

By defining the index i so that

pi = arg

[
min

pj∈{pi}
‖pj − T (p ′i)‖

]
(65)

we get the expression (61). Since the transformation T is not known in advance but assumed
to be small (the data sets are supposed to be well aligned), T is taken as the identity transfor-
mation. In this way corresponding points are defined as:

pi = arg

[
min

pj∈{pi}
‖pj − p ′i‖

]
(66)

After calculating the corresponding points and the resulting transformation, it can be ex-
pected that – after applying the transformation – the data sets become closer to each other.
Thus it seems reasonable to iterate this procedure (therefore the term ICP: Iterative Closest
Points [3]) until convergence of the computed transformation:

1. find closest points according to (66),
2. calculate rotation R and translation t that minimize the least-squares sum of corresponding

points (61),
3. apply the transformation to all points in the first data set.
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However, if the estimation of corresponding points during the initialization step is ”too bad”
the algorithm will not converge to the right transformation6 but will stuck in a local minimum.
Nevertheless this algorithm has become the standard for the precise registration of two data
sets, described in details in [3, 54] and used as the basis of more sophisticated algorithms in
[44, 2, 15, 28, 42, 40]. Besl and McKay proposed an accelerated version of the ICP algorithm [3]
in using linear and quadratic extrapolation of the registration parameters during the iterations.
In this way they reduced the number of iterations until convergence of the transformation by
a factor of 2 to 3.

In (66) corresponding points are defined as the points with minimal distances between points
of two given data sets. Although this definition of corresponding points is quite often used
[3, 54], another approach is possible: since a point set defines a surface (of course, not uniquely)
the corresponding point to a point p ′0 ∈ {p ′i} can also be defined as the point ps0 (on the surface
S defined by the points {pi}) having minimal distance to p ′0, i.e.

ps0 = arg

[
min
ps∈S

‖ps − p ′0‖
]

. (67)

This definition of corresponding points is used for example in [8, 44, 28]. Since the surface re-
sulting from a given point set is not uniquely defined, a more precise definition of corresponding
points has to be given for actual calculations. For example Chen and Medioni [8] propose an
iterative algorithm that takes 3 to 5 iterations to determine a closest point.

The worst case cost of finding the closest point of p ′0 ∈ {p ′i} according to (66) is O(n), where
n is the number of points in {pi}. Therefore the total cost of finding the closest point for all
p ′i ∈ {p ′i} is O(nn′), where n′ is the number of points in {p ′i}. There are several methods which
can considerably speed up the search process, e.g. bucketing techniques (in 3-D or in 2-D by
projection), k-D trees (abbreviation for k-dimensional binary search tree; here k = 3) [54] or
octree-splines [41]. The closest point search can be further accelerated by exploiting a coarse
to fine strategy during the iterations of the ICP: during the first iterations closest points are
only determined for some coarsely sampled points. Then a fine matching using more and more
points follows [54], [44].

8 Robust registration

In order to improve the registration process with the ICP-algorithm it is recommendable to use
the weight factors 1/σ2

i in the least-squares sum (43). For example Turk and Levoy [44] use
the dot product of calculated normals and a vector pointing to the light source as confidence
values. However the derivation of the least-squares sum used in the ICP-algorithm is based
on the assumption that deviations from the model (see (37)) are Gaussian distributed. This
assumption is not valid in practice due to the following arguments:
• Usually there are many points in one data set that should not have a correspondence in the

other data set due to different object occlusions in data sets from different views and/or
since there is only a partial overlap between the data sets. However point correspondences
(=closest points) are always found in the ICP-algorithm.

• Usually there are outliers in the data sets frequently due to some unknown reasons. Perhaps
there was a percussion during the measurement process or the camera was overdriven due
to light reflections.

6As described the algorithm always converges to the identity transformation. Here we mean that the com-
bined transformation over all iterations does not converge to the right transformation.
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Statisticians have developed various sorts of robust methods that can reduce the influence of
outliers:

8.1 First simple approach

An intuitive method to eliminate outliers from the matching process of two data sets is to
compute the mean value µ of the distances di between corresponding points, and to remove
from the least-squares sum (32) each point pair whose distance is larger than a given threshold
D (e.g. D = µ+3σ where σ is the standard deviation of the distances). Then one iteration of the
ICP-algorithm is performed. Before the next iteration the mean value µ is calculated again on
all points of the data sets to prevent that more and more points are eliminated [54]. However
since the influence of corresponding points in the standard least-squares sum quadratically
increases with their distances, outliers are much more weighted than ”correct” data points and
thus can strongly distort the estimation of the computed transformation parameters (one far-
away outlier can make all other outliers have small distances di, so that ”correct” data points
are rejected instead of the outliers).

8.2 M-estimators

A generalization of this approach is the concept of M-estimators. In this case, instead of
minimizing ∑

i

‖pi − T (p ′i)‖2
=

∑
i

d2
i , (68)

we replace the squared distance (L2-estimator) by a function ρ of di

∑
i

ρ(di) (69)

where ρ is a symmetric, positive definite function with a unique minimum at zero and is less
increasing than square. It can be shown that minimizing (69) is equivalent to minimizing the
following iterated reweighted least-squares expression [52],

∑
i

ω
(
d

(k−1)
i

)
d2

i (70)

where ω(x) = 1
x

dρ
dx

, the superscript (k) indicates the iteration number, and ω
(
d

(k−1)
i

)
has to

be recalculated after each iteration in order to be used in the next iteration. In this way the
first method described above can be considered as the special case of M-estimator minimization

by taking ω(x) =

{
1 |x| ≤ D
0 else

. Note that M-estimators suffer from the same problems as

described above. Examples of several weight functions ω can be found in [52, 34, 32].

8.3 Least Median of Squares

A really robust approach that overcomes the bad influence of outliers is the Least Median of
Squares method (LMedS). This method is not affected by outliers up to a rate of 50% [28, 34].
In this approach the transformation parameters are estimated by minimizing

mediani

(
d2

i

)
(71)

in the following way:
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• Since there is (probably) no straightforward formula for the median function, it is not possi-
ble to differentiate (71) and apply standard optimization techniques to find the minimizing
transformation parameters. Thus the complete parameter space should be investigated.

• Since such an exhaustive search of the parameter space would not be feasible, only trans-
formations based on corresponding points (closest points) can be considered: each com-
bination of three point correspondences define a possible transformation (in 3-D space).
In practice the number of such combinations is so large that it must be reduced by only
randomly taking a few of them.

• For each random combination the corresponding transformation is applied and the median
value of the distances ‖pi − T (p ′i)‖ between all corresponding points pi and p ′i is computed.
The transformation for which the median is minimal is retained.

The minimal number of randomly chosen combinations m depends on the rate of outliers ε
in the data sets and on the desired reliability R that the LMedS solution is not corrupted by
outliers. It can be easily seen that the reliability R is given by:

R = 1−
[
1− (1− ε)D

]m

, (72)

where D is the minimal number of points necessary to define a unique transformation (in 3-D
space: D = 3). Therefore the minimal number of combinations is:

m =
log (1−R)

log
[
1− (1− ε)D

] . (73)

(For example for R = 0.99 and ε = 0.4 we get m = 19.)

8.4 Extended Kalman Filtering

Another robust technique coming from the signal processing theory is Extended Kalman Fil-
tering (EKF). This method makes use of a priori knowledge and provides a recursive solution
to the least-squares problem. Since it would be quite time consuming to explain this approach,
we refer the interested reader for a basic introduction to [50] and for an application on 3-D
registration to [31].

9 Registration of multiple point sets

Till now only the registration between two data sets was considered. For practical applications,
such as virtual reality, CAD-processing or NC-manufacturing, it is however of interest to match
several range views together to reconstruct a 3D-model of the original object. The techniques
described below assume that:
• different views of the object to be modeled are pairwisely overlapping, i.e. each view has

a common area with (at least) two other views.
• these views have already been transformed by a coarse registration, i.e. they nearly lie in

the same coordinate system.
A first simple approach is to process the views sequentially [28]:
• Firstly one of the data sets is taken as reference.
• Secondly one of its (2 or more) connected views is registered, so that the integrated model

forms the new reference.
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• In this way all other views are added one by one building at each step a new integrated
model.

The disadvantage of this method is that information of a subsequently registered view cannot
improve the registration of previously matched views. Due to compounding registration errors
a gap usually occurs in the area where the last view (of the closed object) is matched with the
combined model of all other views registered so far.

One possibility to overcome this problem is to directly register all views to a single master
view, for example a cylindrical scan of the whole object [44]. In this way the multiple view
registration problem is reduced to several pairwise matching problems, which can be directly
solved by one of the methods described above (typically ICP).

In the absence of such a master view it seems reasonable to equally distribute the registration
errors over the whole object: a similarity metric has to be defined, which takes into account
the distances between corresponding points in all N views simultaneously. For each data set
{pi}(j), 1 ≤ j ≤ N which has correspondences with Nj other views the combined least-squares
sum of corresponding points is given by (compare (45))

Nj∑

k=1

∑
i

1

σ2
i

∥∥∥p(j)
i − T (kj)p

,(k)
i

∥∥∥
2

. (74)

By defining a reference view to which all views are referred, the transformation from view (k)

to (j) can always be written as
T (kj) = T (j)−1

T (k) (75)

where T (j) is the transformation from view (j) to the reference. In this way the transformation
between any two data sets is then uniquely defined regardless of the path chosen to link the
views [2]. To consider all views simultaneously the summation over all data sets has to be
minimized [39]:

Ẽ
(
T (1), . . . , T (N)

)
=

N∑
j=1

Nj∑

k=1

∑
i

1

σ2
i

∥∥∥p(j)
i − T (j)−1

T (k)p
,(k)
i

∥∥∥
2

. (76)

Note that T (j0) = Id if the j0-th data set is the reference view. The minimization problem (76)
can be solved by the standard optimization techniques presented in section 7.
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[35] H. Schönfeld, G. Häusler, and S. Karbacher. Reverse engineering using optical 3d sensors.
In Three-Dimensional Image Capture and Applications, volume 3313 of Proceedings of
SPIE. R. N. Ellson and J. H. Nurre, 1998.

[36] A. Singh and M. Shneier. Grey level corner detector: A generalization and a robust real
time implementation. Computer, Vision, Graphics, and Image Processing, 51:54–69, 1990.

[37] G. Stockman, S. Kopstein, and S. Benett. Matching images to models for registration
and object detection via clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 4(3):229 – 241, 1982.
Given two intensity images the 2-D rotation, translation and scaling between the images
is found without any a priori knowledge. In a first step point features are detected in
the images. Two point features define a vector. If n point features are given there are
n2 possible vectors in one image. One combination of vectors from both images define a
transformation (rotation, translation, scaling). Each transformation is filled in a cluster
space (O(n4)). The maximum in the cluster space determines the right transformation.

25



This method uses the fundamental idea of the Hough method. Therefore clustering should
be better named Hough method.

[38] A.J. Stoddart and K. Brunnström. Free-form surface matching using mean field the-
ory. In British Machine Vision Conference, pages 33 – 42, Edinburgh, UK, 1996.
http://www.ee.surrey.ac.uk/pub/vision/papers/stoddart-mft-bmvc96.ps.Z .
An approach for finding the inital guess of the rotation and translation between the object
and the model surface in the free-form surface matching problem is described. An objective
function that measures the match quality is designed and then used in an algorithm based
on mean field theory (MFT). Experimental results are given.

[39] A.J. Stoddart and A. Hilton. Registration of multiple point sets. In 13th
Int. Conference on Pattern Recognition, pages B40 – 44, Vienna, Austria, 1996.
http://www.ee.surrey.ac.uk/pub/vision/papers/stoddart-icpr96.ps.Z .
Given several range images from different viewpoints and good initial transformations for
these images the described algorithm minimizes the registration errors of all views simul-
taneously with one cost function for all views. Experimental results are given.

[40] G. Subsol, J.P. Thirion, and N. Ayache. A scheme for automatically building three-
dimensional morphometric anatomical atlases: application to a skull atlas. Medical Image
Analysis, 2(1):37 – 60, 1998.
Given several surfaces (segmented by intensity thresholding from CT scans) of different
subjects (different skulls) a feature registration algorithm is presented (for building a mor-
phometric anatomical atlas). In a first step crest lines are extracted as features. To iden-
tify point and line correspondences between two surfaces an adapted ICP (iterated closest
point) algorithm is performed on the points of the crest lines that takes into account the
strong topological constraint of a line as an ordered list of points. The transformation
used in the ICP is a rigid one during the first iterations, then an affine one and at the
end a spline transformation to model more local and complex deformations. In addition
a common feature identification is performed (common feature subsets form the structure
of the atlas) and the average of the common feature positions and their variabilities are
determined.

[41] R. Szeliski and S. Lavalle. Matching 3-d anatomical surfaces with non-rigid deformations
using octree-splines. International Journal of Computer Vision, 18(2):171 – 186, 1996.

[42] J.P. Thirion. New feature points based on geometric invariants for 3d image registration.
International Journal of Computer Vision, 18(2):121 – 137, 1996.
Given two 3D images (e.g. MRI) of the same subject, taken in two different positions and
with the same acquisition device, a rough estimate of the displacement is found with the
help of extremal points and geometric invariants characterizing these points (but not with
the help of the principal frames in these points). In a prediction-verification scheme the
rough transformation is found (3 points to 3 points means O(n6); complexity reduction
with the help of 28 invariants). Then the best rigid displacement is found via an iterated
closest point (ICP) algorithm. Experimental results are given.

[43] Wu-Ki Tung. Group theory in physics. World Scientific Publishing Co Pte Ltd., 1985.
[44] G. Turk and M. Levoy. Zippered polygon meshes from range images. In A. Glassner,

editor, Proceedings of SIGGRAPH ’94, Annual Conference Series, pages 311 – 318. ACM
SIGGRAPH, July 1994.
Given several range images from different viewpoints and good initial transformations for
these images a method for combining them into a single polygonal mesh is described. To
find the exact rigid transformation between the images (first a triangle mesh is created for
each range image) an iterative closest point (ICP) algorithm in combination with a quater-

26



nion based method and the acceleration proposed by Besl [3] (use linear and quadratic ex-
trapolation of registration parameters) is used to minimize the weighted (confidence values
given from dot product of normals and vector pointing to light source) least squares sum of
corresponding points (corresponding points = closest points defined by minimal distance
of point to C0 continuous surface). In addition to Besl [3] a distance threshold (twice the
spacing between range points) for outlier detection is introduced in the process of finding
closest points and a restriction to points not lying on the boundary is added. To accelerate
the algorithm a coarse to fine strategy in taking points during the iterations is used (mesh
hierarchy in which each mesh uses one-forth the number of range points that are used in
the next higher level). To overcome the problem of compounding registration errors when
matching several range images, all meshes are registered to a single mesh created from a
cylindrical range image. Experimental results are given.

[45] S. Umeyama. Least-squares estimation of transformation parameters between two point
patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:376 – 380,
1991.
Given two point sets pi and p′i related by p′i = Rpi +T (R rotation, T translation) and the
correspondences between the points a closed-form solution to the least-squares problem of
finding R and T is presented. It is correction to the method of Arun et al. [1].

[46] P. Viola. Alignment by maximization of mutual information. PhD thesis, MIT Department
Electrical Engineering and Computer Science, Cambridge, Mass., 1995.
Theory of mutual information is described in detail. Alignment experiments are presented.

[47] P. Viola and W.M. Wells III. Alignment by maximization of mutual information. In Fifth
International Conference on Computer Vision, Cambridge, Massachusetts, USA, 1995.
IEEE.
Given two data sets (of different modalities) a method for finding the pose of an object
in an image is presented that is based on maximization of their mutual information. The
technique does not require information about surface properties of the object, besides its
shape, and is robust with respect to variations of illumination. Experimental results are
given.

[48] M.W. Walker, L. Shao, and R.A. Volz. Estimating 3-d location parameters using dual
number quaternions. CVGIP: Image Understanding, 54(3):358 – 367, 1991.
Given two point sets pi and p′i related by p′i = Rpi +T (R rotation, T translation) and the
correspondences between the points a closed-form solution to the least-squares problem of
finding R and T is presented which is based on dual number quaternions.

[49] Wu Wang and S.S. Iyengar. Efficient data structures for model-based 3-d object recog-
nition and localization from range images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(10):1035 – 1045, Oct. 1992.
Given a model database and a range image, objects in the range image will be recognized
and localized with the help of curvature information of surface segments. A detailed de-
scription how to get differential information from range images is given. The recognition
process is done in a prediction-verification scheme using some heuristics: taking surface
segments s of the range image one after the other it is searched for all segments in the
model database which match to all taken and matched s so far(using that corresponding
surface points have the same curvatures and the same distances to the center of the surface
segment) until three surface segments of the range image match with surface segments of
the same model in the database. To verify the recognition hypothesis the transformation
between the model and the range image is calculated with the help of the central points
of the surface segments.

27



[50] G. Welch and G. Bishop. An introduction to kalman filter.
http://pc222.math.klte.hu:80/norbi/SpatStat/kalman.pdf.

[51] A.K.C. Wong, S.W. Lu, and M. Rioux. Recognition and shape synthesis of 3-d objects
based on attributed hypergraphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(3):279 – 290, March 1989.
Given a range image of a (simple) object and a database of (simple) prototype objects an
algorithm for object recognition is presented which is based on attributed hypergraph rep-
resentations (AHR) of the objects. An attributed hypergraph is a collection of surfaces and
primitive blocks represented by attributed graphs which are again collections of attributed
vertices and attributed relations between them.

[52] Gang Xu and Zhengyou Zhang. Epipolar Geometry in Stereo, Motion and Object Recog-
nition. Kluwer Academic Publishers, 1996.

[53] Y.Lamdan and H.J. Wolfson. Geometric hashing: A general and efficient model-based
recognition scheme. 2nd Int’l Conf. Comput. Vision, pages 238 – 249, 1988.

[54] Zhengyou Zhang. Iterative point matching for registration of free-form curves and surfaces.
International Journal of Computer Vision, 13(1):119 – 152, 1994.
Given two point sets and a good initial transformation between them an iterative closest
point (ICP) algorithm in combination with the dual number quaternion method is de-
scribed which minimizes the sum of squared residuals (least squares sum of corresponding
points) to find the exact displacement. A statistical method based on distance distribution
is used to recognize outliers (in each iteration of the ICP). The search process for closest
points is accelerated with the help of k-D trees and a coarse-to-fine strategy during the
iterations. Experimental results are given.

28


