
Comparison of ICP-Algorithms: First Results
S. Seeger, B. Glomann, X. Laboureux

In our previous report [1] we introduced a frame-
work for the comparison of ICP-algorithms. Now we
present first interesting results of this work.

An ICP-algorithm is the standard way to solve a
registration task that is formulated as an optimiza-
tion problem. In our framework we distinguished the
factors that influence the function we have to opti-
mize from the strategies to find the optimum. We
implemented three different optimization strategies
and found six reasonable influence factors that can be
hierarchically arranged in the following way (number
of implemented methods in brackets):

• operation1 for finding corresponding points

– operation for finding the closest index (4)

– operation for finding the closest point (2)

– treatment of outliers (operations for han-
dling boundary points (2), for handling usual
outliers (2) and for handling closest points
with a distance above a given threshold
(2))

• cost function (1).

Until now the only cost function we used is a least
squares sum of distances of corresponding points.

The four methods we have implemented for find-
ing the closest index are

1. a straightforward search by testing each of the
n1 points in data set 1 with each of the n2 points
in data set 2 (complexity of O(n1n2)) and doing
this in each of the l iterations (O(n1n2l))

2. performing the O(n1n2) search only in the first
iteration; in all further iterations doing only a
local search over a given neighborhood of the
last iteration closest index point (O(nl))

3. building up in a preprocessing step a so called
k-D tree (O(n log n) for n = n1 = n2) [2] that
enables a closest index point search with worst
case complexity of O(n5/3); using the k-D tree
in each of the l iterations (worst case O(n5/3l))

4. building up a k-D tree but using it only in the
first iteration (worst case O(n5/3)); in all fur-
ther iterations performing a local search over a
given neighborhood (O(nl)).

Not surprisingly, the fourth method is faster than the
other three ones: While using the first method needs
17.10 sec on the average per iteration, it needs 1.48
sec with the second, 1.30 sec using the third and 0.99

1Operation is the object oriented term for an abstract func-
tion that can be implemented in several ways.

sec with the fourth method2. The size of the neigh-
borhood in methods 2 and 4 has been arbitrarily cho-
sen to be a level 4 ring (i.e. all points in the neigh-
borhood are not farther away than 4 edges from the
closest index point computed in the last iteration)
which gives reasonable results in all our test cases.
However, since the optimal size of the neighborhood
as a tradeoff between time and accuracy depends on
the given data sets, we started to implement a method
for finding the optimal neighborhood automatically.

As methods for finding the closest point we com-
pared simply taking the closest point that belongs to
the closest index (see above) with taking the closest
linear interpolated point on the triangles. The closest
point search using interpolation provides remarkably
better results with only neglectable additional time
costs. Certainly there are other than linear interpo-
lation schemes that could give motivation for future
work.

We would like to emphasize that all the methods
to handle outliers are of great importance. Boundary
points or usual outliers make the results extremely
dependent on the distance threshold that is used to
reject closest points as corresponding points. How-
ever, a method for automatically finding an optimal
threshold is in progress.

As mentioned earlier we have implemented three
strategies to optimize the cost function in each iter-
ation step of the ICP algorithm: Firstly, by using a
least squares sum of distances of corresponding points
as the cost function the transformation parameters
could be analytically solved with the help of a singu-
lar value decomposition (SVD) of a 3× 3 matrix [3].
Secondly we implemented an approximate solution by
linearizing the transformation parameters in the least
squares sum and solving the resulting system of lin-
ear equations by an LU decomposition. Finally we
used the Levenberg-Marquardt algorithm for finding
the optimum.

It is remarkable that in all of our test cases the lin-
earization strategy exhibits the highest performance,
e.g. for two data sets with about 10000 points the ICP
with linearization needs 20.7 sec, with SVD3 38.3 sec
and with Levenberg-Marquardt 33.6 sec. This result
is in contradiction to [3] where it is claimed that the
analytical solutions are significantly faster.

[1] S. Seeger, B. Glomann, X. Laboureux, A Frame-
work for a Comparison of ICP-Algorithms, Tech. Rep.
[2] Z. Zhang, Iterative point matching for registration
of free-form curves and surfaces., IJCV, 13(1), 1994,
pp. 119 – 152.
[3] K.S. Arun et al., Least-squares fitting of two 3-d

2Measured on Pentium II 300 MHz for 10000 data points.
3SVD algorithm was not optimized for 3× 3 matrices!

2


